Abstract

We designed an InAs coupled quantum-dot (QD) structure with a GaAsSb spacer to form an intermediate band (IB). The electron and hole states are calculated using the k ⋅ p method. The numerical results revealed the band alignment changes to be quasi-type-II with 16% Sb. The 1 nm AlAs layers around the QD and 1 nm GaAs layer help in broadening the intraband absorption spectrum from the far infrared region to infrared range. The coupling QD structure with an 8.5 nm GaAsSb spacer and 16% Sb concentration exhibits better photoelectric efficiency for intermediate band solar cell in the simulation, with a 3.3% enhancement of the same PIN structure with GaAs as the intrinsic region. Introducing a GaAsSb layer in the coupling QD structure will also release the maximum shear stress in QD, exhibiting a 3% release with 16% a GaAsSb spacer.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InAs/GaAsSb quantum dot solar cells

Sabina Hatch, Jiang Wu, Kimberly Sablon, Phu Lam, Mingchu Tang, Qi Jiang, and Huiyun Liu
Opt. Express 22(S3) A679-A685 (2014)

Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells

Farid Elsehrawy, Tapio Niemi, and Federica Cappelluti
Opt. Express 26(6) A352-A359 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  2. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  3. S. Tomić, T. S. Jones, and N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
    [Crossref]
  4. S. Tomić, “Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82(19), 195321 (2010).
    [Crossref]
  5. A. Mellor, A. Luque, I. Tobias, and A. Marti, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Appl. Phys. Lett. 101(13), 133909 (2012).
    [Crossref]
  6. T. Nozawa and Y. Arakawa, “Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions,” Semicond. Sci. Technol. 29(4), 045014 (2014).
    [Crossref]
  7. W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
    [Crossref]
  8. S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
    [Crossref]
  9. W. S. Liu, T. F. Chu, and T. H. Huang, “Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process,” Opt. Express 22(25), 30963–30974 (2014).
    [Crossref] [PubMed]
  10. W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
    [Crossref]
  11. P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
    [Crossref]
  12. A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
    [Crossref]
  13. S. Tomić, “Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
    [Crossref]
  14. J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
    [Crossref]
  15. A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
    [Crossref]
  16. F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
    [Crossref]
  17. G. Liu and S. L. Chuang, “Modeling of Sb-based type-II quantum cascade lasers,” Phys. Rev. B 65(16), 165220 (2002).
    [Crossref]
  18. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  19. Comsol, COMSOL Multiphysics@ Version 4.3b, Comsol, 2013.
  20. L. Börnstein, Numerical Data and Functional Relationships in Science and Technology - New Series (Springer, Berlin, 1982).
  21. S. L. Chung, Physics of Photonic Devices, 2nd Edition (WILEY, 2008), Chap. 9.
  22. S. Tomić, T. Sogabe, and Y. Okada, “In-plane effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Prog. Photovolt. Res. Appl. 23(5), 546–558 (2015).
    [Crossref]
  23. K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: effects of doping and concentration,” J. Appl. Phys. 112(8), 084510 (2012).
    [Crossref]

2015 (2)

J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
[Crossref]

S. Tomić, T. Sogabe, and Y. Okada, “In-plane effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Prog. Photovolt. Res. Appl. 23(5), 546–558 (2015).
[Crossref]

2014 (2)

W. S. Liu, T. F. Chu, and T. H. Huang, “Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process,” Opt. Express 22(25), 30963–30974 (2014).
[Crossref] [PubMed]

T. Nozawa and Y. Arakawa, “Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions,” Semicond. Sci. Technol. 29(4), 045014 (2014).
[Crossref]

2013 (4)

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

S. Tomić, “Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
[Crossref]

A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
[Crossref]

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

2012 (3)

A. Mellor, A. Luque, I. Tobias, and A. Marti, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Appl. Phys. Lett. 101(13), 133909 (2012).
[Crossref]

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: effects of doping and concentration,” J. Appl. Phys. 112(8), 084510 (2012).
[Crossref]

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

2011 (2)

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

2010 (1)

S. Tomić, “Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82(19), 195321 (2010).
[Crossref]

2008 (2)

S. Tomić, T. S. Jones, and N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[Crossref]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

2002 (1)

G. Liu and S. L. Chuang, “Modeling of Sb-based type-II quantum cascade lasers,” Phys. Rev. B 65(16), 165220 (2002).
[Crossref]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1997 (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Andreev, V.

A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
[Crossref]

Arakawa, Y.

T. Nozawa and Y. Arakawa, “Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions,” Semicond. Sci. Technol. 29(4), 045014 (2014).
[Crossref]

Bremner, S. P.

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

Chang, W. H.

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Chiu, P. C.

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Chu, T. F.

Chuang, S. L.

G. Liu and S. L. Chuang, “Modeling of Sb-based type-II quantum cascade lasers,” Phys. Rev. B 65(16), 165220 (2002).
[Crossref]

Chyi, J. I.

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Cloutier, S. G.

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

Ekins-Daukes, N. J.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Gladkov, P.

J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
[Crossref]

Harrison, N. M.

S. Tomić, T. S. Jones, and N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[Crossref]

Hospodková, A.

J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
[Crossref]

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Hsu, F. C.

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

Hsu, W. T.

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Huang, T. H.

Huffaker, D. L.

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

Hulicius, E.

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Jones, T. S.

S. Tomić, T. S. Jones, and N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[Crossref]

Kioseoglou, J.

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Komninou, P.

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Kubištová, J.

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Kuldová, K.

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Laghumavarapu, R. B.

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

Lam, P.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Lee, K.-H.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Lee, M. C.

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Liang, B.

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

Liao, Y. A.

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Lin, A.

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

Linares, P. G.

A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
[Crossref]

Liu, G.

G. Liu and S. L. Chuang, “Modeling of Sb-based type-II quantum cascade lasers,” Phys. Rev. B 65(16), 165220 (2002).
[Crossref]

Liu, H.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Liu, W. S.

Luque, A.

A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
[Crossref]

A. Mellor, A. Luque, I. Tobias, and A. Marti, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Appl. Phys. Lett. 101(13), 133909 (2012).
[Crossref]

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Marti, A.

A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
[Crossref]

A. Mellor, A. Luque, I. Tobias, and A. Marti, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Appl. Phys. Lett. 101(13), 133909 (2012).
[Crossref]

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Mellor, A.

A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
[Crossref]

A. Mellor, A. Luque, I. Tobias, and A. Marti, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Appl. Phys. Lett. 101(13), 133909 (2012).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Miyashita, N.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Nataraj, L.

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

Nozawa, T.

T. Nozawa and Y. Arakawa, “Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions,” Semicond. Sci. Technol. 29(4), 045014 (2014).
[Crossref]

Okada, Y.

S. Tomić, T. Sogabe, and Y. Okada, “In-plane effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Prog. Photovolt. Res. Appl. 23(5), 546–558 (2015).
[Crossref]

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: effects of doping and concentration,” J. Appl. Phys. 112(8), 084510 (2012).
[Crossref]

Opila, R.

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

Oswald, J.

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Pancholi, A.

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

Pangrác, J.

J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
[Crossref]

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Petrícek, O.

J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Reyner, C. J.

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

Sano, N.

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: effects of doping and concentration,” J. Appl. Phys. 112(8), 084510 (2012).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Simmonds, P. J.

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

Sogabe, T.

S. Tomić, T. Sogabe, and Y. Okada, “In-plane effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Prog. Photovolt. Res. Appl. 23(5), 546–558 (2015).
[Crossref]

Sun, M.

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

Tobias, I.

A. Mellor, A. Luque, I. Tobias, and A. Marti, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Appl. Phys. Lett. 101(13), 133909 (2012).
[Crossref]

Tomic, S.

S. Tomić, T. Sogabe, and Y. Okada, “In-plane effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Prog. Photovolt. Res. Appl. 23(5), 546–558 (2015).
[Crossref]

S. Tomić, “Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
[Crossref]

S. Tomić, “Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82(19), 195321 (2010).
[Crossref]

S. Tomić, T. S. Jones, and N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[Crossref]

Tutu, F. K.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Vyslocil, J.

J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
[Crossref]

Weiland, C.

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

Wilson, J.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Wu, J.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

Yoshida, K.

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: effects of doping and concentration,” J. Appl. Phys. 112(8), 084510 (2012).
[Crossref]

Zíková, M.

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

Appl. Phys. Lett. (8)

S. Tomić, T. S. Jones, and N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[Crossref]

A. Mellor, A. Luque, I. Tobias, and A. Marti, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Appl. Phys. Lett. 101(13), 133909 (2012).
[Crossref]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Appl. Phys. Lett. 99(7), 073108 (2011).
[Crossref]

P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Appl. Phys. Lett. 100(24), 243108 (2012).
[Crossref]

S. Tomić, “Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
[Crossref]

A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Marti, “Some advantages of intermediate band solar cells based on type II quantum dots,” Appl. Phys. Lett. 103(12), 123901 (2013).
[Crossref]

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada, K.-H. Lee, N. J. Ekins-Daukes, J. Wilson, and H. Liu, “InAs/GaAs quantum dot solar cell with an AlAs cap layer,” Appl. Phys. Lett. 102(16), 163907 (2013).
[Crossref]

J. Appl. Phys. (4)

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: effects of doping and concentration,” J. Appl. Phys. 112(8), 084510 (2012).
[Crossref]

A. Hospodková, J. Oswald, J. Pangrác, M. Zíková, J. Kubištová, P. Komninou, J. Kioseoglou, K. Kuldová, and E. Hulicius, “Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier,” J. Appl. Phys. 114(17), 174305 (2013).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Cryst. Growth (1)

J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV structures for intermediate band solar cell,” J. Cryst. Growth 414, 172–176 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

S. Tomić, “Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82(19), 195321 (2010).
[Crossref]

G. Liu and S. L. Chuang, “Modeling of Sb-based type-II quantum cascade lasers,” Phys. Rev. B 65(16), 165220 (2002).
[Crossref]

Phys. Rev. Lett. (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

S. Tomić, T. Sogabe, and Y. Okada, “In-plane effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Prog. Photovolt. Res. Appl. 23(5), 546–558 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

T. Nozawa and Y. Arakawa, “Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions,” Semicond. Sci. Technol. 29(4), 045014 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Sol. Energy Mater. Sol. Cells 95(7), 1665–1670 (2011).
[Crossref]

Other (3)

Comsol, COMSOL Multiphysics@ Version 4.3b, Comsol, 2013.

L. Börnstein, Numerical Data and Functional Relationships in Science and Technology - New Series (Springer, Berlin, 1982).

S. L. Chung, Physics of Photonic Devices, 2nd Edition (WILEY, 2008), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The designed structure of coupling quantum dot with GaAsSb as inter layer and AlAs layers. The width of QD is b and the height is h. The thicknesses of AlAs layer, GaAsSb layer and GaAs bottom layer are d, d1 and d2, respectively. (a) for 3D structure and (b) for 2D slice.
Fig. 2
Fig. 2 Band-diagram for different Sb concentration (x) with thickness of GaAsSb layer is equal to 2.5 nm.
Fig. 3
Fig. 3 (a) Bandwidth of the intermediate band (ΔEIB) and bandgap between intermediate band and conduction band (EgIC) for d1 with x = 10%, (b) schematic diagram of band structure for IB and CB, orange frame represents IB.
Fig. 4
Fig. 4 (a) Bandwidth of the intermediate band (ΔEIB) and bandgap between intermediate band and conduction band (EgIC) for d1 with d1 = 2.5 nm, (b) schematic diagram of band structure for IB and CB, orange frame represents IB.
Fig. 5
Fig. 5 Absorption spectrum for (a) IB-CB transition, (b) VB-CB transition for different for AlAs layer thicknesses.
Fig. 6
Fig. 6 Absorption spectrum for (a) IB-CB transition, (b) VB-CB transition for different GaAs layer thicknesses.
Fig. 7
Fig. 7 (a) Efficiency fot the coupling QD with 2.5 nm GaAsSb for different Sb concentration. The red line is represents the efficiency for GaAs bulk used in I region. (b) The IB bandwidth and the effective bandgap for the designed structure. The red line represents the bandgap energy of GaAs.
Fig. 8
Fig. 8 Absorption spectrums for coupling QD structure with different Sb concentration of 2.5 nm GaAsSb layer, (a) absorption coefficients for transition from VB-CB. (b) absorption coefficients for transition from VB-IB. (c) absorption coefficients for transition from IB-CB.
Fig. 9
Fig. 9 (a) Efficiency fot the coupling QD with 10% Sb concentration for different GaAsSb thicknesses. The red line is reprents the efficiency for GaAs bulk used in I region. (b) The IB bandwidth and the effective bandgap for the designed structure. The red line represents the bandgap energy of GaAs.
Fig. 10
Fig. 10 Band-diagram for different Sb concentration (x) with thickness of GaAsSb layer is equal to 8.5 nm.
Fig. 11
Fig. 11 yz slice through the center of the structure of ground state hole wave function for different Sb concentration (x) with thickness of GaAsSb layer is equal to 8.5 nm.
Fig. 12
Fig. 12 Max. shear stress in different materials fot the coupling QD with 8.5 nm GaAsSb x for different Sb concentration. GaAs represent the spacer between unit cells, and GaAsSb x represebt the spacer between QDs in a unit cell.

Metrics