Abstract

A simple method for manufacturing centimeter-long all-PDMS embedded and rib microwaveguides is presented. It allows for the fabrication of centimeter-long micromolds by direct laser ablation of a desired waveguide pattern inside an acrylic sheet to create a pattern which is then transferred to a poly-dimethylsiloxane (PDMS) layer using soft-lithography. A refractive index difference between the core and cladding of 1.3x10−3 was achieved by controlling the PDMS curing and linear attenuation of 1.27 dB/cm for embedded and 2.36 dB/cm for a rib waveguide, similar to other techniques. Finally, a beamsplitter was fabricated to demonstrate that our low-cost process is suitable to integrate waveguide devices on lab on chip platforms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating

Jack Sheng Kee, Daniel Puiu Poenar, Pavel Neužil, Levent Yobaş, and Yu Chen
Opt. Express 18(21) 21732-21742 (2010)

Design and fabrication of Poly(dimethylsiloxane) single-mode rib waveguide

Jack Sheng Kee, Daniel Puiu Poenar, Pavel Neuzil, and Levent Yobas
Opt. Express 17(14) 11739-11746 (2009)

A hybrid silicon-PDMS optofluidic platform for sensing applications

Genni Testa, Gianluca Persichetti, Pasqualina M. Sarro, and Romeo Bernini
Biomed. Opt. Express 5(2) 417-426 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).
  2. R. Zaouk, B. Y. Park, and M. J. Madou, Introduction to Microfabrication Techniques in Microfluidic Techniques, Shelley D. Minteer, ed. (Humana Press Inc, 2006).
  3. C. R. Martin and I. A. Aksay, “Microchannel molding: A soft lithography inspired approach to micrometer-scale patterning,” J. Mater. Res. 20(08), 1995–2003 (2005).
    [Crossref]
  4. M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
    [Crossref] [PubMed]
  5. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  6. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
    [Crossref] [PubMed]
  7. S. Hengsbach and A. D. Lantada, “Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies,” Biomed. Microdevices 16(4), 617–627 (2014).
    [Crossref] [PubMed]
  8. K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
    [Crossref] [PubMed]
  9. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, and K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express 20(8), 9312–9321 (2012).
    [Crossref] [PubMed]
  10. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
    [Crossref]
  11. Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
    [Crossref] [PubMed]
  12. J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
    [Crossref]
  13. K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
    [Crossref] [PubMed]
  14. P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
    [Crossref] [PubMed]
  15. D. A. Chang-Yen and B. K. Gale, “An Integrated Optical Glucose Sensor Fabricated Using PDMS Waveguides on a PDMS,” Proc. SPIE 5345, 98–107 (2004).
    [Crossref]
  16. L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
    [Crossref] [PubMed]
  17. D. A. Chang-yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23(6), 2088–2093 (2005).
    [Crossref]
  18. J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009).
    [Crossref] [PubMed]
  19. Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 20(204), 44–47 (2013).
    [Crossref]
  20. R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424 (2003).
    [Crossref]
  21. Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [Crossref]
  22. H. Hosseinkhannazer, L.W. Kostiuk and J.N. McMullin, “Two-species microparticle detection in optofluidic biochips with polymeric waveguides,” Pro. SPIE 7099, 70990H (2008).
  23. J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
    [Crossref]
  24. X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
    [Crossref]
  25. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” (AEU),” Int. J. Electron. Commun. 61(3), 163–167 (2007).
    [Crossref]
  26. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
    [Crossref] [PubMed]
  27. S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng. 20(8), 087002 (2010).
    [Crossref]
  28. P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
    [Crossref] [PubMed]
  29. D. Jandura, D. Pudis, and S. Berezina, “Photonic devices prepared by embossing in PDMS,” Appl. Surf. Sci. 395(1), 145–149 (2016).
  30. L. Cabriales, M. Hautefeuille, G. Fernández, V. Velázquez, M. Grether, and E. López-Moreno, “Rapid fabrication of on-demand high-resolution optical masks with a CD-DVD pickup unit,” Appl. Opt. 53(9), 1802–1807 (2014).
    [Crossref] [PubMed]
  31. D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
    [Crossref]
  32. I. Martinček, I. Turek, and N. Tarjányi, “Effect of boundary on refractive index of PDMS,” Opt. Mater. Express 4(10), 1997–2005 (2014).
    [Crossref]

2016 (1)

D. Jandura, D. Pudis, and S. Berezina, “Photonic devices prepared by embossing in PDMS,” Appl. Surf. Sci. 395(1), 145–149 (2016).

2014 (4)

L. Cabriales, M. Hautefeuille, G. Fernández, V. Velázquez, M. Grether, and E. López-Moreno, “Rapid fabrication of on-demand high-resolution optical masks with a CD-DVD pickup unit,” Appl. Opt. 53(9), 1802–1807 (2014).
[Crossref] [PubMed]

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

I. Martinček, I. Turek, and N. Tarjányi, “Effect of boundary on refractive index of PDMS,” Opt. Mater. Express 4(10), 1997–2005 (2014).
[Crossref]

S. Hengsbach and A. D. Lantada, “Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies,” Biomed. Microdevices 16(4), 617–627 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref] [PubMed]

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 20(204), 44–47 (2013).
[Crossref]

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

2012 (4)

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, and K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express 20(8), 9312–9321 (2012).
[Crossref] [PubMed]

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

2011 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

2010 (1)

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng. 20(8), 087002 (2010).
[Crossref]

2009 (1)

2008 (2)

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

2007 (3)

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” (AEU),” Int. J. Electron. Commun. 61(3), 163–167 (2007).
[Crossref]

2005 (3)

2004 (2)

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

D. A. Chang-Yen and B. K. Gale, “An Integrated Optical Glucose Sensor Fabricated Using PDMS Waveguides on a PDMS,” Proc. SPIE 5345, 98–107 (2004).
[Crossref]

2003 (2)

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424 (2003).
[Crossref]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Aksay, I. A.

C. R. Martin and I. A. Aksay, “Microchannel molding: A soft lithography inspired approach to micrometer-scale patterning,” J. Mater. Res. 20(08), 1995–2003 (2005).
[Crossref]

Azmayesh-Fard, S. M.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng. 20(8), 087002 (2010).
[Crossref]

Baehr-Jones, T.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Berezina, S.

D. Jandura, D. Pudis, and S. Berezina, “Photonic devices prepared by embossing in PDMS,” Appl. Surf. Sci. 395(1), 145–149 (2016).

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Bosman, E.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Cabriales, L.

Cai, D.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” (AEU),” Int. J. Electron. Commun. 61(3), 163–167 (2007).
[Crossref]

Cai, Z.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 20(204), 44–47 (2013).
[Crossref]

Chang-yen, D. A.

D. A. Chang-yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23(6), 2088–2093 (2005).
[Crossref]

D. A. Chang-Yen and B. K. Gale, “An Integrated Optical Glucose Sensor Fabricated Using PDMS Waveguides on a PDMS,” Proc. SPIE 5345, 98–107 (2004).
[Crossref]

Chen, J.

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

Chen, Z.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Eich, R. K.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fei, P.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Fernández, G.

Flaim, E.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng. 20(8), 087002 (2010).
[Crossref]

Gale, B. K.

D. A. Chang-yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23(6), 2088–2093 (2005).
[Crossref]

D. A. Chang-Yen and B. K. Gale, “An Integrated Optical Glucose Sensor Fabricated Using PDMS Waveguides on a PDMS,” Proc. SPIE 5345, 98–107 (2004).
[Crossref]

Galland, C.

Gao, T.

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

Grether, M.

Hautefeuille, M.

Hengsbach, S.

S. Hengsbach and A. D. Lantada, “Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies,” Biomed. Microdevices 16(4), 617–627 (2014).
[Crossref] [PubMed]

Hochberg, M.

Hölscher, H.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Horváth, R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424 (2003).
[Crossref]

Hu, J.

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

Huang, Y.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Ishikawa, Y.

Jandura, D.

D. Jandura, D. Pudis, and S. Berezina, “Photonic devices prepared by embossing in PDMS,” Appl. Surf. Sci. 395(1), 145–149 (2016).

Kalathimekkad, S.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Kee, J. S.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009).
[Crossref] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[Crossref]

Kimura, H.

Klank, H.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

Kopetz, S.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” (AEU),” Int. J. Electron. Commun. 61(3), 163–167 (2007).
[Crossref]

Kou, R.

Ksendzov, A.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Kutter, J. P.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

Lantada, A. D.

S. Hengsbach and A. D. Lantada, “Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies,” Biomed. Microdevices 16(4), 617–627 (2014).
[Crossref] [PubMed]

Larsen, N. B.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424 (2003).
[Crossref]

Lee, H. L. T.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Lee, K. S.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Lee, S.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Li, A.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Lim, A. E.

Lin, Y.

Lindvold, L. R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424 (2003).
[Crossref]

Liu, W.

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

Lo, G. Q.

López-Moreno, E.

Martin, C. R.

C. R. Martin and I. A. Aksay, “Microchannel molding: A soft lithography inspired approach to micrometer-scale patterning,” J. Mater. Res. 20(08), 1995–2003 (2005).
[Crossref]

Martincek, I.

McMullin, J. N.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng. 20(8), 087002 (2010).
[Crossref]

Melati, D.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Melloni, A.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Men, Y.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Missinne, J.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Mogensen, K. B.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

Morichetti, F.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Neuzil, P.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009).
[Crossref] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[Crossref]

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Neyer, A.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” (AEU),” Int. J. Electron. Commun. 61(3), 163–167 (2007).
[Crossref]

Nishi, H.

Novak, L.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Pipper, J.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Poenar, D. P.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009).
[Crossref] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[Crossref]

Pudis, D.

D. Jandura, D. Pudis, and S. Berezina, “Photonic devices prepared by embossing in PDMS,” Appl. Surf. Sci. 395(1), 145–149 (2016).

Qiu, W.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 20(204), 44–47 (2013).
[Crossref]

Que, W.

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

Rabe, E.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” (AEU),” Int. J. Electron. Commun. 61(3), 163–167 (2007).
[Crossref]

Ram, R. J.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Röhrig, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Shao, G.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 20(204), 44–47 (2013).
[Crossref]

Shen, Y.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Shinojima, H.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sia, S. K.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tarjányi, N.

Thiel, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Tsuchizawa, T.

Turek, I.

Van Daele, P.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Van Hoe, B.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Van Steenberge, G.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Vanfleteren, J.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Velázquez, V.

Wada, K.

Wang, W.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 20(204), 44–47 (2013).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Whitesides, G. M.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Worgull, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Yamada, K.

Yamada, T.

Yang, S.

Yobas, L.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009).
[Crossref] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[Crossref]

Zhang, X.

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref] [PubMed]

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

X. Zhang, W. Que, J. Chen, J. Hu, T. Gao, and W. Liu, “Sol–gel concave micro-lens arrays fabricated by combining the replicated PDMS soft mold with UV-cured imprint process,” Appl. Phys. B 113(2), 299–306 (2013).
[Crossref]

Appl. Surf. Sci. (1)

D. Jandura, D. Pudis, and S. Berezina, “Photonic devices prepared by embossing in PDMS,” Appl. Surf. Sci. 395(1), 145–149 (2016).

Biomed. Microdevices (1)

S. Hengsbach and A. D. Lantada, “Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies,” Biomed. Microdevices 16(4), 617–627 (2014).
[Crossref] [PubMed]

Electrophoresis (2)

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible Shear Sensor Based on Embedded Optoelectronic Components,” IEEE Photonics Technol. Lett. 23(12), 771–773 (2011).
[Crossref]

Int. J. Electron. Commun. (1)

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” (AEU),” Int. J. Electron. Commun. 61(3), 163–167 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Res. (1)

C. R. Martin and I. A. Aksay, “Microchannel molding: A soft lithography inspired approach to micrometer-scale patterning,” J. Mater. Res. 20(08), 1995–2003 (2005).
[Crossref]

J. Micromech. Microeng. (2)

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng. 20(8), 087002 (2010).
[Crossref]

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13(3), 419–424 (2003).
[Crossref]

Lab Chip (4)

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. SPIE (1)

D. A. Chang-Yen and B. K. Gale, “An Integrated Optical Glucose Sensor Fabricated Using PDMS Waveguides on a PDMS,” Proc. SPIE 5345, 98–107 (2004).
[Crossref]

Sens. Actuators A Phys. (1)

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 20(204), 44–47 (2013).
[Crossref]

Sens. Actuators B Chem. (1)

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[Crossref]

Small (1)

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Other (3)

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).

R. Zaouk, B. Y. Park, and M. J. Madou, Introduction to Microfabrication Techniques in Microfluidic Techniques, Shelley D. Minteer, ed. (Humana Press Inc, 2006).

H. Hosseinkhannazer, L.W. Kostiuk and J.N. McMullin, “Two-species microparticle detection in optofluidic biochips with polymeric waveguides,” Pro. SPIE 7099, 70990H (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

All-PDMS waveguides fabrication procedure as described in the text.

Fig. 2
Fig. 2

Diagram of the optical setup used for optical waveguides characterization

Fig. 3
Fig. 3

Side view micrograph of all-PDMS waveguides: (a) embedded channel, and (b) rib waveguide. Both structures were cut perpendicularly to the propagation axis. Measurements of optical attenuation for: (c) embedded and (d) rib waveguides. The lines in the plots represent the linear fitting of the experimental points, showing an attenuation of 1.27dB/cm for the embedded channel and 2.36dB/cm for the rib waveguide.

Fig. 4
Fig. 4

Beamsplitter validation test design. Separation between the legs with respect to the central input channel is controlled to vary the output efficiency as it is getting closer to the critical angle.

Fig. 5
Fig. 5

Speckle pattern observed at a small distance from the output of a 2 cm long straight embedded waveguide chip.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

αL=10Log( P 1 P 0 )
NA= n c 2 n s 2
θ a = sin 1 ( NA n 1 )

Metrics