Abstract

Two-dimensional (2D) distributed feedback (DFB) lasers with gratings imprinted by thermal nanoimprint lithography on the active film are reported. They show thresholds for lasing of ∼10 kW/cm2, similar to the most efficient imprinted DFB lasers reported; and long operational lifetimes (under ambient conditions) of ∼12 × 104 pump pulses. The key for their successful operation has been the selection of a highly efficient and stable dye, perylene orange (PDI-O), and a proper matrix to host it, the fluoro-modified thermoplastic resist mr-I7030R, which has enabled 2D imprinting while preserving the dye optical properties. The use of the UV-curable resist SU8 as an alternative matrix for PDI-O to be imprinted by combined nanoimprint and photolithography was also investigated, and was concluded to be unsuccessful due to severe photoluminescence quenching. By replacing PDI-O with Rhodamine 6G, lasers with reasonable thresholds, but with significantly inferior operational lifetimes in comparison to PDI-O/mr-I7030R devices, were obtained.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient organic distributed feedback lasers with imprinted active films

Manuel G. Ramirez, Pedro G. Boj, Victor Navarro-Fuster, Igor Vragovic, José M. Villalvilla, Ibon Alonso, Vera Trabadelo, Santos Merino, and María A. Díaz-García
Opt. Express 19(23) 22443-22454 (2011)

Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings

Manuel G. Ramírez, José M. Villalvilla, José A. Quintana, Pedro G. Boj, and María A. Díaz-García
Opt. Mater. Express 4(4) 733-738 (2014)

Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites

Guy L. Whitworth, Jonathan R. Harwell, David N. Miller, Gordon J. Hedley, Wei Zhang, Henry J. Snaith, Graham A. Turnbull, and Ifor D. W. Samuel
Opt. Express 24(21) 23677-23684 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
    [Crossref]
  2. A. J. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
    [Crossref] [PubMed]
  3. E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
    [Crossref]
  4. D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
    [Crossref]
  5. J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, “Polymer laser fabricated by a simple micromolding process,” Appl. Phys. Lett. 82(23), 4023–4025 (2003).
    [Crossref]
  6. G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
    [Crossref]
  7. M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, “Efficient organic distributed feedback lasers with imprinted active films,” Opt. Express 19(23), 22443–22454 (2011).
    [Crossref] [PubMed]
  8. A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
    [Crossref]
  9. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
    [Crossref]
  10. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
    [Crossref]
  11. V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
    [Crossref]
  12. V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
    [Crossref]
  13. S. Merino, H. Schift, A. Retolaza, and T. Haatainen, “The use of automatic demolding in nanoimprint lithography processes,” Microelectron. Eng. 84(5-8), 958–962 (2007).
    [Crossref]
  14. M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
    [Crossref]
  15. M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
    [Crossref]
  16. M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
    [Crossref]
  17. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
    [Crossref]
  18. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
    [Crossref]
  19. M. G. Ramírez, J. M. Villalvilla, J. A. Quintana, P. G. Boj, and M. A. Díaz-García, “Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings,” Opt. Mater. Express 4(4), 733–738 (2014).
    [Crossref]
  20. M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
    [Crossref] [PubMed]

2016 (2)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

A. J. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref] [PubMed]

2015 (2)

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

2014 (2)

M. G. Ramírez, J. M. Villalvilla, J. A. Quintana, P. G. Boj, and M. A. Díaz-García, “Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings,” Opt. Mater. Express 4(4), 733–738 (2014).
[Crossref]

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

2013 (2)

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

2012 (1)

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

2011 (1)

2010 (2)

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

2009 (1)

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

2007 (2)

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

S. Merino, H. Schift, A. Retolaza, and T. Haatainen, “The use of automatic demolding in nanoimprint lithography processes,” Microelectron. Eng. 84(5-8), 958–962 (2007).
[Crossref]

2006 (1)

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

2005 (1)

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

2003 (1)

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, “Polymer laser fabricated by a simple micromolding process,” Appl. Phys. Lett. 82(23), 4023–4025 (2003).
[Crossref]

2000 (1)

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

1999 (1)

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Alonso, I.

Anni, M.

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Barbarella, G.

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Boj, P. G.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

M. G. Ramírez, J. M. Villalvilla, J. A. Quintana, P. G. Boj, and M. A. Díaz-García, “Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings,” Opt. Mater. Express 4(4), 733–738 (2014).
[Crossref]

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, “Efficient organic distributed feedback lasers with imprinted active films,” Opt. Express 19(23), 22443–22454 (2011).
[Crossref] [PubMed]

Buß, T.

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

Calzado, E. M.

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

Camposeo, A.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

Casado, J.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Christiansen, M. B.

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

Chutinan, A.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Cingolani, R.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Del Carro, P.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

Di Benedetto, F.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

Díaz-García, M. A.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

M. G. Ramírez, J. M. Villalvilla, J. A. Quintana, P. G. Boj, and M. A. Díaz-García, “Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings,” Opt. Mater. Express 4(4), 733–738 (2014).
[Crossref]

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, “Efficient organic distributed feedback lasers with imprinted active films,” Opt. Express 19(23), 22443–22454 (2011).
[Crossref] [PubMed]

Ebenhoch, B.

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

Favaretto, L.

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Feldmann, J.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Gather, M. C.

A. J. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref] [PubMed]

Gigli, G.

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Gombert, A.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

Gruetzner, G.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Haatainen, T.

S. Merino, H. Schift, A. Retolaza, and T. Haatainen, “The use of automatic demolding in nanoimprint lithography processes,” Microelectron. Eng. 84(5-8), 958–962 (2007).
[Crossref]

Heeger, A. J.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Imada, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Jørgensen, M. M.

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

Juarros, A.

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

Kallinger, C.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Kehagias, N.

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Kehoe, T.

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

Kristensen, A.

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

Kuehne, A. J.

A. J. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref] [PubMed]

Lawrence, J. R.

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, “Polymer laser fabricated by a simple micromolding process,” Appl. Phys. Lett. 82(23), 4023–4025 (2003).
[Crossref]

Ledochowitsch, P.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Lemmer, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Lin, N.-T.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Lovera, P.

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Mednick, S. R.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Mele, E.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Merino, S.

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, “Efficient organic distributed feedback lasers with imprinted active films,” Opt. Express 19(23), 22443–22454 (2011).
[Crossref] [PubMed]

S. Merino, H. Schift, A. Retolaza, and T. Haatainen, “The use of automatic demolding in nanoimprint lithography processes,” Microelectron. Eng. 84(5-8), 958–962 (2007).
[Crossref]

Morales-Vidal, M.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

Moses, D.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Nakamura, E.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Namdas, E. B.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Navarro-Fuster, V.

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, “Efficient organic distributed feedback lasers with imprinted active films,” Opt. Express 19(23), 22443–22454 (2011).
[Crossref] [PubMed]

Noda, S.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Otaduy, D.

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

Persano, L.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Petersen, S. R.

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

Pisignano, D.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Quintana, J. A.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

M. G. Ramírez, J. M. Villalvilla, J. A. Quintana, P. G. Boj, and M. A. Díaz-García, “Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings,” Opt. Mater. Express 4(4), 733–738 (2014).
[Crossref]

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

Ramirez, M. G.

Ramírez, M. G.

M. G. Ramírez, J. M. Villalvilla, J. A. Quintana, P. G. Boj, and M. A. Díaz-García, “Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings,” Opt. Mater. Express 4(4), 733–738 (2014).
[Crossref]

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

Reboud, V.

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Redmond, G.

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Retolaza, A.

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

S. Merino, H. Schift, A. Retolaza, and T. Haatainen, “The use of automatic demolding in nanoimprint lithography processes,” Microelectron. Eng. 84(5-8), 958–962 (2007).
[Crossref]

Reuther, F.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Riechel, S.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Romero-Vivas, J.

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

Ruangsupapichat, N.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Samuel, I. D. W.

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, “Polymer laser fabricated by a simple micromolding process,” Appl. Phys. Lett. 82(23), 4023–4025 (2003).
[Crossref]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Scherf, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Schift, H.

S. Merino, H. Schift, A. Retolaza, and T. Haatainen, “The use of automatic demolding in nanoimprint lithography processes,” Microelectron. Eng. 84(5-8), 958–962 (2007).
[Crossref]

Schuster, C.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Smith, C. L. C.

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

Sotomayor Torres, C. M.

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Stabile, R.

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

Stevenson, J. R. Y.

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Tong, M.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Trabadelo, V.

Tsuji, H.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Turnbull, G. A.

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, “Polymer laser fabricated by a simple micromolding process,” Appl. Phys. Lett. 82(23), 4023–4025 (2003).
[Crossref]

Villalvilla, J. M.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

M. G. Ramírez, J. M. Villalvilla, J. A. Quintana, P. G. Boj, and M. A. Díaz-García, “Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings,” Opt. Mater. Express 4(4), 733–738 (2014).
[Crossref]

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, “Efficient organic distributed feedback lasers with imprinted active films,” Opt. Express 19(23), 22443–22454 (2011).
[Crossref] [PubMed]

Visconti, P.

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Vragovic, I.

Whitworth, G. L.

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

Wittwer, V.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Yan, Q.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Yuen, J. D.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Zelsmann, M.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

Zhang, S.

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

Zhu, X.

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Appl. Phys. Lett. (9)

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[Crossref]

V. Reboud, J. Romero-Vivas, P. Lovera, N. Kehagias, T. Kehoe, G. Redmond, and C. M. Sotomayor Torres, “Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers,” Appl. Phys. Lett. 102(7), 073101 (2013).
[Crossref]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

M. M. Jørgensen, S. R. Petersen, M. B. Christiansen, T. Buß, C. L. C. Smith, and A. Kristensen, “Influence of index contrast in two dimensional photonic crystals lasers,” Appl. Phys. Lett. 96(23), 231115 (2010).
[Crossref]

E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, V. Navarro-Fuster, A. Retolaza, S. Merino, and M. A. Díaz-García, “Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers,” Appl. Phys. Lett. 101(22), 223303 (2012).
[Crossref]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, “Polymer laser fabricated by a simple micromolding process,” Appl. Phys. Lett. 82(23), 4023–4025 (2003).
[Crossref]

G. L. Whitworth, S. Zhang, J. R. Y. Stevenson, B. Ebenhoch, I. D. W. Samuel, and G. A. Turnbull, “Solvent immersion nanoimprint lithography of fluorescent conjugated polymers,” Appl. Phys. Lett. 107(16), 163301 (2015).
[Crossref]

E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, “Polymeric distributed feedback laser by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 89(13), 131109 (2006).
[Crossref]

Chem. Rev. (1)

A. J. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

M. G. Ramírez, M. Morales-Vidal, V. Navarro-Fuster, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, S. Merino, and M. A. Díaz-García, “Improved performance of perylenediimide-based lasers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(6), 1182–1191 (2013).
[Crossref]

J. Micromech. Microeng. (1)

M. B. Christiansen, T. Buß, C. L. C. Smith, S. R. Petersen, M. M. Jørgensen, and A. Kristensen, “Single mode dye-doped polymer photonic crystal lasers,” J. Micromech. Microeng. 20(11), 115025 (2010).
[Crossref]

Microelectron. Eng. (2)

A. Retolaza, A. Juarros, D. Otaduy, S. Merino, V. Navarro-Fuster, M. G. Ramírez, P. G. Boj, J. A. Quintana, J. M. Villalvilla, and M. A. Díaz-García, “Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication,” Microelectron. Eng. 114, 52–56 (2014).
[Crossref]

S. Merino, H. Schift, A. Retolaza, and T. Haatainen, “The use of automatic demolding in nanoimprint lithography processes,” Microelectron. Eng. 84(5-8), 958–962 (2007).
[Crossref]

Nat. Commun. (1)

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, J. A. Quintana, Q. Yan, N.-T. Lin, X. Zhu, N. Ruangsupapichat, J. Casado, H. Tsuji, E. Nakamura, and M. A. Díaz-García, “Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers,” Nat. Commun. 6, 8458 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

Synth. Met. (1)

D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met. 153(1-3), 237–240 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Nanofabrication techniques: (a) T-NIL, i) spin-coating, ii) imprint, iii) demolding; and (b) CNP, i) spin-coating, ii) imprint, iii) UV exposure, iv) demolding and v) development.
Fig. 2
Fig. 2 (a) Normalized PL spectra (i.e. PL intensity divided by film thickness) of 1 wt%- PDI-O-doped films of PS, mrI-7030R and SU-8 (1 red, 2 blue and 3 green curves, respectively); and ASE spectrum for the mr-I7030R film (black curve); (b) PL and ASE spectra (blue and black lines, respectively) of SU8 doped with 0.4 wt% of Rh6G.
Fig. 3
Fig. 3 (a) Spectra and (b) output versus pump intensity curves for various 2D DFB lasers: devices I and II, with T-NIL imprinted gratings on 270 and 500 nm-thick PDI-O/mr-I7030R active films, respectively; device III: with a CNP imprinted grating on a 650 nm-thick Rh6G/SU8 film; (c) and (d) SEM images for devices II and III, respectively.

Metrics