Abstract

Yb3+ ion doped highly transparent Lu3Al5O12 (LuAG) ceramics were fabricated by a pressure-less sintering in H2 atmosphere starting from nanocrystalline powder derived from a wet chemical processing. A fully transparent Yb:LuAG ceramic was densified under 1750 °C for 10 hours with a linear optical transmittance of 83.1% at the wavelength of 800 nm. The average grain size of obtained transparent ceramics was only 1μm with nearly uniform distribution of the nanocrystals. A 0.91 W continuous wave laser output was achieved with a 3at.%Yb:LuAG ceramic at room temperature, when pumped with a 940 nm single-emitter laser diode. The absorbed pump power threshold was only about 0.29 W, and the best optical to optical efficiency was 58%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation

Liqiong An, Akihiko Ito, Jian Zhang, Dingyuan Tang, and Takashi Goto
Opt. Mater. Express 4(7) 1420-1426 (2014)

Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering

Changwen Xu, Chengdong Yang, Han Zhang, Yanmin Duan, Haiyong Zhu, Dingyuan Tang, Huihui Huang, and Jian Zhang
Opt. Express 24(18) 20571-20579 (2016)

Yb:LuAG laser ceramics: a promising high power laser gain medium

Dewei Luo, Jian Zhang, Changwen Xu, Hao Yang, Hui Lin, Haiyong Zhu, and Dingyuan Tang
Opt. Mater. Express 2(10) 1425-1431 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
    [Crossref]
  2. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
    [Crossref] [PubMed]
  3. B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
    [Crossref]
  4. M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
    [Crossref]
  5. D. W. Luo, J. Zhang, C. W. Xu, H. Yang, H. Lin, H. Y. Zhu, and D. Y. Tang, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 2(10), 1425–1431 (2012).
    [Crossref]
  6. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [Crossref] [PubMed]
  7. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
    [Crossref] [PubMed]
  8. A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
    [Crossref]
  9. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
    [Crossref]
  10. Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
    [Crossref]
  11. C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
    [Crossref]
  12. T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium aluminum garnet fine powder,” Japan Patent, 3,798,482 (1996).
  13. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
    [Crossref] [PubMed]
  14. H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Demonstration of a Yb3+-doped Lu3Al5O12 ceramic thin-disk laser,” Opt. Lett. 39(10), 2884–2887 (2014).
    [Crossref] [PubMed]
  15. H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, and T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
    [Crossref] [PubMed]
  16. M. Akchurin, R. V. Gainutdinov, I. I. Kupenko, H. Yagi, K. Ueda, A. Shirakawa, and A. A. Kaminskii, “Lutetium-aluminum garnet laser ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
    [Crossref]

2016 (1)

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

2014 (1)

2013 (2)

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

2012 (4)

2011 (1)

M. Akchurin, R. V. Gainutdinov, I. I. Kupenko, H. Yagi, K. Ueda, A. Shirakawa, and A. A. Kaminskii, “Lutetium-aluminum garnet laser ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[Crossref]

2010 (1)

2009 (1)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

2007 (1)

2006 (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

2004 (1)

1995 (1)

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Ahmed, M. A.

Akchurin, M.

M. Akchurin, R. V. Gainutdinov, I. I. Kupenko, H. Yagi, K. Ueda, A. Shirakawa, and A. A. Kaminskii, “Lutetium-aluminum garnet laser ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[Crossref]

Akiyama, J.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Aung, Y. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Beil, K.

Blazek, K.

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Dong, J.

Fredrich-Thornton, S. T.

Fu, Y. L.

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

Furusato, I.

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Gainutdinov, R. V.

M. Akchurin, R. V. Gainutdinov, I. I. Kupenko, H. Yagi, K. Ueda, A. Shirakawa, and A. A. Kaminskii, “Lutetium-aluminum garnet laser ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[Crossref]

Graf, T.

Griebner, U.

Huber, G.

Ikesue, A.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Jiang, B. X.

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Kamada, K.

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Kamata, K.

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Kaminskii, A. A.

Kränkel, C.

Kupenko, I. I.

M. Akchurin, R. V. Gainutdinov, I. I. Kupenko, H. Yagi, K. Ueda, A. Shirakawa, and A. A. Kaminskii, “Lutetium-aluminum garnet laser ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[Crossref]

Li, J.

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Li, W. X.

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

Lin, H.

Liu, S. P.

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Liu, W. B.

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Lu, X.

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Luo, D. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

D. W. Luo, J. Zhang, C. W. Xu, H. Yang, H. Lin, H. Y. Zhu, and D. Y. Tang, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 2(10), 1425–1431 (2012).
[Crossref]

Mares, J. A.

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Messing, G. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Nakao, H.

Nejezchleb, K.

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Nikl, M.

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Pan, Y. B.

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Petermann, K.

Peters, R.

Peters, V.

Petrov, V.

Qin, X. P.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

Sato, Y.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Shi, Y.

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Shirakawa, A.

Stanek, C. R.

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Taira, T.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Tan, W. D.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

Tang, D. Y.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

D. W. Luo, J. Zhang, C. W. Xu, H. Yang, H. Lin, H. Y. Zhu, and D. Y. Tang, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 2(10), 1425–1431 (2012).
[Crossref]

Tellkamp, F.

Tokurakawa, M.

Ueda, K.

Wang, C.

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

Weichelt, B.

Wentsch, K.

Wu, L. X.

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

Xie, T. F.

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

Xu, C. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

D. W. Luo, J. Zhang, C. W. Xu, H. Yang, H. Lin, H. Y. Zhu, and D. Y. Tang, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 2(10), 1425–1431 (2012).
[Crossref]

Yagi, H.

Yanagitani, T.

Yang, H.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

D. W. Luo, J. Zhang, C. W. Xu, H. Yang, H. Lin, H. Y. Zhu, and D. Y. Tang, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 2(10), 1425–1431 (2012).
[Crossref]

Yoshida, K.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Yoshikawa, A.

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Zeng, Y. P.

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Zhang, J.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

D. W. Luo, J. Zhang, C. W. Xu, H. Yang, H. Lin, H. Y. Zhu, and D. Y. Tang, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 2(10), 1425–1431 (2012).
[Crossref]

Zhu, H. Y.

Annu. Rev. Mater. Res. (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Dokl. Phys. (1)

M. Akchurin, R. V. Gainutdinov, I. I. Kupenko, H. Yagi, K. Ueda, A. Shirakawa, and A. A. Kaminskii, “Lutetium-aluminum garnet laser ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[Crossref]

J. Alloys Compd. (1)

Y. L. Fu, J. Li, C. Wang, T. F. Xie, W. X. Li, L. X. Wu, and Y. B. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664(15), 595–601 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Laser Phys. Lett. (1)

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi. (1)

B. X. Jiang, X. Lu, Y. P. Zeng, S. P. Liu, J. Li, W. B. Liu, Y. Shi, and Y. B. Pan, “Synthesis and properties of Yb:LuAG transparent ceramics,” Phys. Status Solidi. 10(6), 958–961 (2013).
[Crossref]

Prog. Cryst. Growth Ch. (1)

M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C. R. Stanek, J. A. Mares, and K. Blazek, “Development of LuAG-based scintillator Crystals-A review,” Prog. Cryst. Growth Ch. 59(2), 47–72 (2013).
[Crossref]

Other (1)

T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium aluminum garnet fine powder,” Japan Patent, 3,798,482 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM of Yb:LuAG polycrystal powders calcined at various temperatures (a) 1100°C/2h, (b) 1200°C/2h, (c) 1300°C/2h, and (d) the comparison of X-ray diffraction patterns calcined at various temperatures.
Fig. 2
Fig. 2 TEM micrograph of Yb:LuAG powders calcined at 1200°C and 1300°C for 2 h.
Fig. 3
Fig. 3 Inline optical transmittance curves of optical polished 3at.%Yb:LuAG ceramic. (Inset: Appearance of the Yb:LuAG transparent ceramics before and after polishing).
Fig. 4
Fig. 4 (a) Scanning electron micrograph (SEM) image of the fracture surface of Yb:LuAG transparent ceramic; (b) SEM image of the polished and thermally etched surface; (c) magnification microscopy of fractures; and (d) magnification microscopy of the etched surface.
Fig. 5
Fig. 5 The output power vs. absorbed pump power for three different output couplings.

Metrics