Abstract

This work proposes a refractive index sensing concept of a Tamm plasmon (TP) device by using spectroscopic ellipsometry and phase detection. A TP device is generally composed of a 1-D photonic crystal (PC) with a metallic film on top of it. We found that the sensing performance can be improved by adjusting the parameters of the incident angle of polarized light, the top layer thickness, and the central wavelength of the PC. By designing proper parameters, it was found that the change of the phase difference of p-polarized and s-polarized lights, δ∆, can reach 34° when the ambient environment is changed from air (n = 1.00028) to carbon dioxide (n = 1.00045). A sensitivity of δ∆/δn ~2 × 105 °/RIU can then be obtained for the proposed TP device.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene

M. Mehdi Keshavarz and Abbas Alighanbari
Appl. Opt. 58(13) 3604-3612 (2019)

Model for confined Tamm plasmon devices

Mike Adams, Ben Cemlyn, Ian Henning, Matthew Parker, Edmund Harbord, and Ruth Oulton
J. Opt. Soc. Am. B 36(1) 125-130 (2019)

Phase sensitive sensor on plasmonic nanograting structures.

M. Maisonneuve, O. d’Allivy Kelly, A-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier
Opt. Express 19(27) 26318-26324 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
    [Crossref]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  3. K. Y. Kim, Plasmonics - Principles and Applications (InTech, 2012).
  4. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
    [Crossref]
  5. W. L. Zhang and S. F. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283(12), 2622–2626 (2010).
    [Crossref]
  6. C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
    [Crossref]
  7. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
    [Crossref] [PubMed]
  8. B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
    [Crossref]
  9. R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896–899 (2014).
    [Crossref] [PubMed]
  10. R. B. M. Schasfoort and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).
  11. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
    [Crossref] [PubMed]
  12. Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
    [Crossref]
  13. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [Crossref] [PubMed]
  14. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
    [Crossref]
  15. The refractive index of gas depends on several parameters, such as pressure, temperature and wavelength. The values adopted in this work are only for theoretical calculation. However, the error is less than 5% for practical applications.
  16. Database of Essential Macleod, viewed 6 February 2017.
  17. O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
    [Crossref] [PubMed]
  18. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett. 35(24), 4112–4114 (2010).
    [Crossref] [PubMed]
  19. C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).
  20. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35(7), 956–958 (2010).
    [Crossref] [PubMed]

2015 (1)

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).

2014 (3)

2012 (2)

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

2011 (1)

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1996 (1)

1973 (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Abdala, N. L.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Aberra Guebrou, S.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Abjean, R.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Angelomé, P. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Auguié, B.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Bellessa, J.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Bideau-Mehu, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Bloch, J.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Brucoli, G.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Chang, C.-Y.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).

Chen, K.-P.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).

Chen, Y.-H.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).

Ciddor, P. E.

Das, R.

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
[Crossref]

Fainstein, A.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
[Crossref]

Fuertes, M. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Gauthron, K.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Gazzano, O.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

Guern, Y.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Ho, H. P.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Homeyer, E.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Huang, Y.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
[Crossref]

Jha, R.

Jiang, Y.

Johannin-Gilles, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Jomaa, M. H.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Kabashin, A. V.

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
[Crossref]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
[Crossref]

Kong, S. K.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Kravets, V. G.

Kuo, H.-C.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).

Lemaître, A.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Long, H.

Lu, P.

Michaelis de Vasconcellos, S.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Patskovsky, S.

Rao, Y. J.

Schedin, F.

Senellart, P.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Soler Illia, G. J. A. A.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Srivastava, T.

Symonds, C.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Tsai, Y.-L.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).

Voisin, P.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Wang, F.

Wang, K.

Yang, G.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yu, S. F.

W. L. Zhang and S. F. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283(12), 2622–2626 (2010).
[Crossref]

Zhang, W. L.

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
[Crossref] [PubMed]

W. L. Zhang and S. F. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283(12), 2622–2626 (2010).
[Crossref]

Zhou, H.

ACS Photonics (1)

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Ann. Phys. (Berlin) (1)

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. (Berlin) 524(11), 637–662 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 4600206 (2015).

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), 202 (2002).
[Crossref]

Opt. Commun. (2)

W. L. Zhang and S. F. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283(12), 2622–2626 (2010).
[Crossref]

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Phys. Rev. Lett. (1)

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Other (4)

K. Y. Kim, Plasmonics - Principles and Applications (InTech, 2012).

The refractive index of gas depends on several parameters, such as pressure, temperature and wavelength. The values adopted in this work are only for theoretical calculation. However, the error is less than 5% for practical applications.

Database of Essential Macleod, viewed 6 February 2017.

R. B. M. Schasfoort and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The schematic structure of the TP device, and (b) the apparatus for reflectance measurement.
Fig. 2
Fig. 2 Reflectance spectra of the simulation and experimental results for the TP device at normal incidence.
Fig. 3
Fig. 3 Experimental and simulation results of (a) reflectance spectra (b) ψ and (c) ∆ for the TP device in the air environment at θi = 65°.
Fig. 4
Fig. 4 The simulation results of (a) reflectance spectra (mean of p and s) (b) ψ and (c) ∆ for the TP device in the air environment with different Au thicknesses at θi = 65°.
Fig. 5
Fig. 5 The simulation results of (a) reflectance spectra (mean of p and s) (b) ψ and (c) ∆ for the TP device in the air environment at different incident angles.
Fig. 6
Fig. 6 Simulation results of SE parameters ψ and ∆ for the TP device at θi = 65° when the ambient environment is changed from air to CO2.
Fig. 7
Fig. 7 δ∆ as a function of the wavelength at different incident angles, where λc = 730 nm and tTiO2 = 239 nm.
Fig. 8
Fig. 8 δ∆ and the corresponding λmax as a function of the incident angle, where λc = 730 nm and tTiO2 = 239 nm.
Fig. 9
Fig. 9 δ∆ and the corresponding λmax as a function of tTiO2, where θi = 65° and λc = 730 nm..
Fig. 10
Fig. 10 δ∆ and λmax as a function of the central wavelength, where tTiO2 = 239 nm and θi = 65°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r p r s = | r p | | r s | e i( δ p δ s ) =tan( ψ ) e iΔ

Metrics