Abstract

A high-power Yb/Ce co-doped double-clad fiber with low optical loss was successfully fabricated by an optimized chelate gas phase deposition technique. It exhibits a nearly homogenous distribution of Al, Ce and Yb ions in the fiber core region, which reduce the clustering. The core attenuation at 1080 nm and 1383 nm are 12 dB/km and 46 dB/km, respectively, indicating high optical performance with a low optical loss. The amplifier stage with this fiber delivers 4.62 kW excellent beam quality (M2 = 1.67) laser output with a slope efficiency of 80.3%. The experimental results show that the chelate gas phase deposition technique is a prospective method to fabricate a Yb/Ce co-doped fiber with low optical loss, which is beneficial for acquiring multi-kilowatt continuous-wave fiber laser with excellent beam quality.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
KW-level low photodarkening Yb/Ce codoped aluminosilicate fiber fabricated by the chelate gas phase deposition technique

Lihua Zhang, Gang Li, Weinan Li, Qi Gao, Zhe Li, Wei Zhao, Baoyin Zhao, and Chaoqi Hou
Opt. Mater. Express 6(11) 3558-3564 (2016)

Ultra-low-loss double-cladding laser fiber fabricated by optimized chelate gas phase deposition technique

Shengfei She, Weinan Li, Chang Chang, Zhe Li, Jinkun Zheng, Song Gao, Yan Zhang, Gang Li, Qi Gao, Wei Zhao, Baoyin Zhao, Haitao Guo, and Chaoqi Hou
Appl. Opt. 57(27) 7943-7949 (2018)

Ytterbium-doped double-cladding fiber with 3.5 kW output power, fabricated by chelate gas phase deposition technique

Chaoqi Hou, Yonggang Zhu, Jinkun Zheng, Gang Li, Chao Li, Song Gao, Qi Gao, Lihua Zhang, Chang Chang, Wei Zhao, Weinan Li, and Baoyin Zhao
Opt. Mater. Express 6(4) 979-985 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  3. Y. Wang, C. Q. Xu, and P. Hong, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
    [Crossref]
  4. H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
    [Crossref] [PubMed]
  5. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  6. Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
    [Crossref]
  7. F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
    [Crossref]
  8. A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
    [Crossref]
  9. J. M. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Metal clad active fibres for power scaling and thermal management at kW power levels,” Opt. Express 24(16), 18592–18606 (2016).
    [Crossref] [PubMed]
  10. M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
    [Crossref]
  11. M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
    [Crossref]
  12. J. J. Montiel i Ponsoda, L. Norin, C. Ye, M. Bosund, M. J. Söderlund, A. Tervonen, and S. Honkanen, “Ytterbium-doped fibers fabricated with atomic layer deposition method,” Opt. Express 20(22), 25085–25095 (2012).
    [Crossref] [PubMed]
  13. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref] [PubMed]
  14. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
    [Crossref]
  15. E. A. Savel’ev, A. V. Krivovichev, and K. M. Golant, “Clustering of Yb in silica-based glasses synthesized by SPCVD,” Opt. Mater. 62(1), 518–526 (2016).
    [Crossref]
  16. http://www.ipgphotonics.com/group/view/8/Lasers/High_Power_CW_Fiber_Lasers
  17. C. Jauregui, H. J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
    [Crossref] [PubMed]
  18. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express 19(16), 15162–15172 (2011).
    [Crossref] [PubMed]
  19. D. C. Brown and H. J. Hoffman, “Thermal, stress and thermal-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  20. Y. Wang, C. Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
    [Crossref]
  21. Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).
  22. M. Saha, S. D. Chowdhury, N. K. Shekhar, and A. Pal, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2016).
  23. M. E. H. Assad and D. C. Brown, “Thermodynamic analysis of end-pumped fiber lasers subjected to surface cooling,” IEEE J. Quantum Electron. 49(1), 100–107 (2013).
    [Crossref]
  24. P. Elahi and N. Zare, “The analytical solution of rate equations in end pumped fiber lasers with minimum approximation and temperature distribution during the laser operation,” Acta Phys. Pol. A 116(4), 522–524 (2009).
    [Crossref]
  25. S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibers containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
    [Crossref]
  26. E. A. Savelev and K. M. Golant, “Influence of fusing on the uniformity of the distribution of Yb3+ ions and the formation of clusters in silica with phosphorus admixture synthesized by SPCVD,” Opt. Mater. Express 5(10), 2337–2346 (2015).
    [Crossref]
  27. S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
    [Crossref]
  28. S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
    [Crossref]
  29. M. Saha, A. Pal, M. Pal, and C. Guha, “An optimized vapor phase doping process to fabricate highly Yb-doped large core fibers,” J. Lightwave Technol. 33(17), 3533–3541 (2015).
    [Crossref]
  30. A. J. Conduit, D. N. Payne, A. H. Hartog, and M. P. Gold, “Optical fiber diameter variations and their effect on backscatter loss measurements,” Electron. Lett. 17(8), 308–310 (1981).
    [Crossref]
  31. C. Q. Hou, Y. G. Zhu, J. K. Zheng, G. Li, C. Li, S. Gao, Q. Gao, L. H. Zhang, C. Chang, W. Zhao, W. N. Li, and B. Y. Zhao, “Ytterbium doped double cladding fiber with 3.5 kW laser output fabricated by chelate gas phase deposition technique,” Opt. Mater. Express 6(4), 979–985 (2016).
    [Crossref]
  32. W. N. Li, R. Luo, C. Li, S. Gao, C. Chang, C. Q. Hou, and B. Y. Zhao, “Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique,” J. Non-Cryst. Solids 449(1), 119–124 (2016).
    [Crossref]
  33. M. C. Paul, A. V. Kir’yanov, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, J. K. Sahu, A. Martinez-Gamez, and J. L. Lucio-Martinez, “Yb2O3 doped Yttrium-Alumino-Silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
    [Crossref]
  34. L. H. Zhang, G. Li, W. N. Li, Q. Gao, Z. Li, W. Zhao, B. Y. Zhao, and C. Q. Hou, “KW-level low photodarkening Yb/Ce codoped aluminosilicate fiber fabricated by the chelate gas phase deposition technique,” Opt. Mater. Express 6(11), 3558–3564 (2016).
    [Crossref]
  35. M. Engholm, L. Norin, and D. Aberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007).
    [Crossref] [PubMed]
  36. R. Poozesh, A. Norouzy, A. Golshan, A. Roohforouz, A. Babazadeh, R. Nasirabad, N. Jafari, A. Heidariazar, K. Hejaz, A. Alavian, and A. Amidian, “A novel method for stripping cladding lights in high power fiber lasers and amplifiers,” J. Lightwave Technol. 30(20), 3199–3202 (2012).
    [Crossref]
  37. W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
    [Crossref]
  38. T. L. Li, J. Wu, Y. H. Sun, Y. S. Wang, and Y. Ma, “An improved method for stripping cladding light in high power fiber lasers,” Proc. SPIE 9255, 92550M (2015).
    [Crossref]
  39. A. Babazadeh, R. R. Nasirabad, A. Norouzey, K. Hejaz, R. Poozesh, A. Heidariazar, A. H. Golshan, A. Roohforouz, S. N. Jafari, and M. Lafouti, “Robust cladding light stripper for high-power fiber lasers using soft metals,” Appl. Opt. 53(12), 2611–2615 (2014).
    [Crossref] [PubMed]
  40. N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
    [Crossref]
  41. T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
    [Crossref] [PubMed]
  42. R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
    [Crossref]

2016 (7)

M. Saha, S. D. Chowdhury, N. K. Shekhar, and A. Pal, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2016).

E. A. Savel’ev, A. V. Krivovichev, and K. M. Golant, “Clustering of Yb in silica-based glasses synthesized by SPCVD,” Opt. Mater. 62(1), 518–526 (2016).
[Crossref]

W. N. Li, R. Luo, C. Li, S. Gao, C. Chang, C. Q. Hou, and B. Y. Zhao, “Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique,” J. Non-Cryst. Solids 449(1), 119–124 (2016).
[Crossref]

C. Q. Hou, Y. G. Zhu, J. K. Zheng, G. Li, C. Li, S. Gao, Q. Gao, L. H. Zhang, C. Chang, W. Zhao, W. N. Li, and B. Y. Zhao, “Ytterbium doped double cladding fiber with 3.5 kW laser output fabricated by chelate gas phase deposition technique,” Opt. Mater. Express 6(4), 979–985 (2016).
[Crossref]

C. Jauregui, H. J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

J. M. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Metal clad active fibres for power scaling and thermal management at kW power levels,” Opt. Express 24(16), 18592–18606 (2016).
[Crossref] [PubMed]

L. H. Zhang, G. Li, W. N. Li, Q. Gao, Z. Li, W. Zhao, B. Y. Zhao, and C. Q. Hou, “KW-level low photodarkening Yb/Ce codoped aluminosilicate fiber fabricated by the chelate gas phase deposition technique,” Opt. Mater. Express 6(11), 3558–3564 (2016).
[Crossref]

2015 (5)

2014 (3)

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

A. Babazadeh, R. R. Nasirabad, A. Norouzey, K. Hejaz, R. Poozesh, A. Heidariazar, A. H. Golshan, A. Roohforouz, S. N. Jafari, and M. Lafouti, “Robust cladding light stripper for high-power fiber lasers using soft metals,” Appl. Opt. 53(12), 2611–2615 (2014).
[Crossref] [PubMed]

2013 (4)

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

M. E. H. Assad and D. C. Brown, “Thermodynamic analysis of end-pumped fiber lasers subjected to surface cooling,” IEEE J. Quantum Electron. 49(1), 100–107 (2013).
[Crossref]

F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
[Crossref]

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

2012 (6)

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

M. C. Paul, A. V. Kir’yanov, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, J. K. Sahu, A. Martinez-Gamez, and J. L. Lucio-Martinez, “Yb2O3 doped Yttrium-Alumino-Silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

R. Poozesh, A. Norouzy, A. Golshan, A. Roohforouz, A. Babazadeh, R. Nasirabad, N. Jafari, A. Heidariazar, K. Hejaz, A. Alavian, and A. Amidian, “A novel method for stripping cladding lights in high power fiber lasers and amplifiers,” J. Lightwave Technol. 30(20), 3199–3202 (2012).
[Crossref]

J. J. Montiel i Ponsoda, L. Norin, C. Ye, M. Bosund, M. J. Söderlund, A. Tervonen, and S. Honkanen, “Ytterbium-doped fibers fabricated with atomic layer deposition method,” Opt. Express 20(22), 25085–25095 (2012).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).

2011 (2)

2010 (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

2009 (3)

M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
[Crossref]

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
[Crossref]

P. Elahi and N. Zare, “The analytical solution of rate equations in end pumped fiber lasers with minimum approximation and temperature distribution during the laser operation,” Acta Phys. Pol. A 116(4), 522–524 (2009).
[Crossref]

2008 (1)

2007 (1)

2004 (3)

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

Y. Wang, C. Q. Xu, and P. Hong, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[Crossref]

Y. Wang, C. Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

2003 (1)

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
[Crossref]

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress and thermal-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

1985 (1)

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibers containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

1981 (1)

A. J. Conduit, D. N. Payne, A. H. Hartog, and M. P. Gold, “Optical fiber diameter variations and their effect on backscatter loss measurements,” Electron. Lett. 17(8), 308–310 (1981).
[Crossref]

Aberg, D.

Aichele, C.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

Alavian, A.

Amidian, A.

Assad, M. E. H.

M. E. H. Assad and D. C. Brown, “Thermodynamic analysis of end-pumped fiber lasers subjected to surface cooling,” IEEE J. Quantum Electron. 49(1), 100–107 (2013).
[Crossref]

Babazadeh, A.

Bachert, C.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Barmenkov, Y. O.

Bartelt, H.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

Barty, C. P. J.

Beach, R. J.

Bhadra, S. K.

Bosund, M.

Boyland, A. J.

M. C. Paul, A. V. Kir’yanov, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, J. K. Sahu, A. Martinez-Gamez, and J. L. Lucio-Martinez, “Yb2O3 doped Yttrium-Alumino-Silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

Breitkopf, S.

Brown, D. C.

M. E. H. Assad and D. C. Brown, “Thermodynamic analysis of end-pumped fiber lasers subjected to surface cooling,” IEEE J. Quantum Electron. 49(1), 100–107 (2013).
[Crossref]

D. C. Brown and H. J. Hoffman, “Thermal, stress and thermal-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Bubnov, M. M.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Cain-Skaff, M.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
[Crossref]

Cao, J. Q.

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

Chang, C.

W. N. Li, R. Luo, C. Li, S. Gao, C. Chang, C. Q. Hou, and B. Y. Zhao, “Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique,” J. Non-Cryst. Solids 449(1), 119–124 (2016).
[Crossref]

C. Q. Hou, Y. G. Zhu, J. K. Zheng, G. Li, C. Li, S. Gao, Q. Gao, L. H. Zhang, C. Chang, W. Zhao, W. N. Li, and B. Y. Zhao, “Ytterbium doped double cladding fiber with 3.5 kW laser output fabricated by chelate gas phase deposition technique,” Opt. Mater. Express 6(4), 979–985 (2016).
[Crossref]

Chatigny, S.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
[Crossref]

Chen, D. P.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Chen, J.

Chowdhury, S. D.

M. Saha, S. D. Chowdhury, N. K. Shekhar, and A. Pal, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2016).

Clarkson, W. A.

Conduit, A. J.

A. J. Conduit, D. N. Payne, A. H. Hartog, and M. P. Gold, “Optical fiber diameter variations and their effect on backscatter loss measurements,” Electron. Lett. 17(8), 308–310 (1981).
[Crossref]

Dai, S. J.

Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).

Daniel, J. M.

Das, S.

Dawson, J. W.

Dellith, J.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

Deschamps, T.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Dong, J.

Elahi, P.

P. Elahi and N. Zare, “The analytical solution of rate equations in end pumped fiber lasers with minimum approximation and temperature distribution during the laser operation,” Acta Phys. Pol. A 116(4), 522–524 (2009).
[Crossref]

Engholm, M.

Eschrich, T.

Fan, Y.

Fan, Y. Y.

Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).

Feng, S. Y.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Fermann, M. E.

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibers containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

Gao, Q.

Gao, S.

C. Q. Hou, Y. G. Zhu, J. K. Zheng, G. Li, C. Li, S. Gao, Q. Gao, L. H. Zhang, C. Chang, W. Zhao, W. N. Li, and B. Y. Zhao, “Ytterbium doped double cladding fiber with 3.5 kW laser output fabricated by chelate gas phase deposition technique,” Opt. Mater. Express 6(4), 979–985 (2016).
[Crossref]

W. N. Li, R. Luo, C. Li, S. Gao, C. Chang, C. Q. Hou, and B. Y. Zhao, “Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique,” J. Non-Cryst. Solids 449(1), 119–124 (2016).
[Crossref]

Golant, K. M.

Gold, M. P.

A. J. Conduit, D. N. Payne, A. H. Hartog, and M. P. Gold, “Optical fiber diameter variations and their effect on backscatter loss measurements,” Electron. Lett. 17(8), 308–310 (1981).
[Crossref]

Golshan, A.

Golshan, A. H.

Gonnet, C.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Grimm, S.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Guha, C.

Guo, S.

Guo, S. F.

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

Guryanov, A. N.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Hartog, A. H.

A. J. Conduit, D. N. Payne, A. H. Hartog, and M. P. Gold, “Optical fiber diameter variations and their effect on backscatter loss measurements,” Electron. Lett. 17(8), 308–310 (1981).
[Crossref]

Haub, J.

He, B.

Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).

Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express 19(16), 15162–15172 (2011).
[Crossref] [PubMed]

Heebner, J. E.

Heidariazar, A.

Hejaz, K.

Hemming, A.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress and thermal-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Hong, P.

Y. Wang, C. Q. Xu, and P. Hong, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[Crossref]

Honkanen, S.

Hou, C. Q.

Hu, L. L.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Jafari, N.

Jafari, S. N.

Jauregui, C.

Jeong, Y.

Jiang, Z. F.

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

Just, F.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

King, T. A.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
[Crossref]

Kir’yanov, A. V.

Kiritchenko, N. V.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Kobelke, J.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

Kotov, L. V.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Kozak, M.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Krause, V.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Krivovichev, A. V.

E. A. Savel’ev, A. V. Krivovichev, and K. M. Golant, “Clustering of Yb in silica-based glasses synthesized by SPCVD,” Opt. Mater. 62(1), 518–526 (2016).
[Crossref]

Lafouti, M.

Langner, A.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Lapointe, M. A.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
[Crossref]

Laptev, A. Y.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Leich, M.

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Leng, J.

Leng, J. Y.

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

Li, C.

W. N. Li, R. Luo, C. Li, S. Gao, C. Chang, C. Q. Hou, and B. Y. Zhao, “Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique,” J. Non-Cryst. Solids 449(1), 119–124 (2016).
[Crossref]

C. Q. Hou, Y. G. Zhu, J. K. Zheng, G. Li, C. Li, S. Gao, Q. Gao, L. H. Zhang, C. Chang, W. Zhao, W. N. Li, and B. Y. Zhao, “Ytterbium doped double cladding fiber with 3.5 kW laser output fabricated by chelate gas phase deposition technique,” Opt. Mater. Express 6(4), 979–985 (2016).
[Crossref]

Li, G.

Li, H. Y.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Li, T. L.

T. L. Li, J. Wu, Y. H. Sun, Y. S. Wang, and Y. Ma, “An improved method for stripping cladding light in high power fiber lasers,” Proc. SPIE 9255, 92550M (2015).
[Crossref]

Li, W. N.

Li, Z.

Likhachev, M. E.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Limpert, J.

Lindner, F.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

Liu, H.

Lou, Q.

Lucio-Martinez, J. L.

Luo, R.

W. N. Li, R. Luo, C. Li, S. Gao, C. Chang, C. Q. Hou, and B. Y. Zhao, “Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique,” J. Non-Cryst. Solids 449(1), 119–124 (2016).
[Crossref]

Lv, H.

Ma, Y.

T. L. Li, J. Wu, Y. H. Sun, Y. S. Wang, and Y. Ma, “An improved method for stripping cladding light in high power fiber lasers,” Proc. SPIE 9255, 92550M (2015).
[Crossref]

Maran, J. N.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
[Crossref]

Martinez-Gamez, A.

Melkumov, M. A.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Mescia, L.

F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
[Crossref]

M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
[Crossref]

Messerly, M. J.

Montiel i Ponsoda, J. J.

Nadgaran, H.

M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
[Crossref]

Nasirabad, R.

Nasirabad, R. R.

Nilsson, J.

Norin, L.

Norouzey, A.

Norouzy, A.

Ollier, N.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Otto, H. J.

Pal, A.

M. Saha, S. D. Chowdhury, N. K. Shekhar, and A. Pal, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2016).

M. Saha, A. Pal, M. Pal, and C. Guha, “An optimized vapor phase doping process to fabricate highly Yb-doped large core fibers,” J. Lightwave Technol. 33(17), 3533–3541 (2015).
[Crossref]

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

Pal, M.

Paul, M. C.

Pax, P. H.

Payne, D.

Payne, D. N.

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibers containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

A. J. Conduit, D. N. Payne, A. H. Hartog, and M. P. Gold, “Optical fiber diameter variations and their effect on backscatter loss measurements,” Electron. Lett. 17(8), 308–310 (1981).
[Crossref]

Piché, M.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
[Crossref]

Pierce, M. C.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
[Crossref]

Po, H.

Y. Wang, C. Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

Poole, S. B.

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibers containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

Poozesh, R.

Prudenzano, F.

F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
[Crossref]

M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
[Crossref]

Rehmann, G.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Richardson, D. J.

Roohforouz, A.

Sabaeian, M.

M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
[Crossref]

Saha, M.

M. Saha, S. D. Chowdhury, N. K. Shekhar, and A. Pal, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2016).

M. Saha, A. Pal, M. Pal, and C. Guha, “An optimized vapor phase doping process to fabricate highly Yb-doped large core fibers,” J. Lightwave Technol. 33(17), 3533–3541 (2015).
[Crossref]

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

Sahu, J.

Sahu, J. K.

M. C. Paul, A. V. Kir’yanov, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, J. K. Sahu, A. Martinez-Gamez, and J. L. Lucio-Martinez, “Yb2O3 doped Yttrium-Alumino-Silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

Sario, M. D.

F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
[Crossref]

M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
[Crossref]

Savel’ev, E. A.

E. A. Savel’ev, A. V. Krivovichev, and K. M. Golant, “Clustering of Yb in silica-based glasses synthesized by SPCVD,” Opt. Mater. 62(1), 518–526 (2016).
[Crossref]

Savelev, E. A.

Schotz, G.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Schötz, G.

Schuster, K.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

Schwuchow, A.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Sen, R.

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

Shekhar, N. K.

M. Saha, S. D. Chowdhury, N. K. Shekhar, and A. Pal, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2016).

Shverdin, M. Y.

Siders, C. W.

Simakov, N.

Söderlund, M. J.

Sridharan, A. K.

Standish, R. J.

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

Stappaerts, E. A.

Such, M.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Sun, Y. H.

T. L. Li, J. Wu, Y. H. Sun, Y. S. Wang, and Y. Ma, “An improved method for stripping cladding light in high power fiber lasers,” Proc. SPIE 9255, 92550M (2015).
[Crossref]

Surico, M.

F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
[Crossref]

Tang, Y. X.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Tervonen, A.

Thomas, T.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
[Crossref]

Tommaso, A. D.

F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
[Crossref]

Tsang, Y. H.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
[Crossref]

Tünnermann, A.

Udell, C.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
[Crossref]

Unger, S.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

Vezin, H.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Wang, M.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Wang, S. K.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Wang, W. L.

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

Wang, X.

Wang, Y.

Y. Wang, C. Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

Y. Wang, C. Q. Xu, and P. Hong, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[Crossref]

Wang, Y. S.

T. L. Li, J. Wu, Y. H. Sun, Y. S. Wang, and Y. Ma, “An improved method for stripping cladding light in high power fiber lasers,” Proc. SPIE 9255, 92550M (2015).
[Crossref]

Webb, S.

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

Wedel, B.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Wei, Y.

Wu, J.

T. L. Li, J. Wu, Y. H. Sun, Y. S. Wang, and Y. Ma, “An improved method for stripping cladding light in high power fiber lasers,” Proc. SPIE 9255, 92550M (2015).
[Crossref]

Xiao, H.

Xu, C. Q.

Y. Wang, C. Q. Xu, and P. Hong, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[Crossref]

Y. Wang, C. Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

Xu, X.

Xu, X. J.

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

Yashkov, M. V.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Ye, C.

Yoo, S.

M. C. Paul, A. V. Kir’yanov, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, J. K. Sahu, A. Martinez-Gamez, and J. L. Lucio-Martinez, “Yb2O3 doped Yttrium-Alumino-Silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

Yu, C. L.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Yu, H.

Zare, N.

P. Elahi and N. Zare, “The analytical solution of rate equations in end pumped fiber lasers with minimum approximation and temperature distribution during the laser operation,” Acta Phys. Pol. A 116(4), 522–524 (2009).
[Crossref]

Zhang, H.

Zhang, L. H.

Zhao, B. Y.

Zhao, C.

Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).

Zhao, W.

Zheng, J.

Zheng, J. K.

Zhou, J.

Zhou, J. T.

Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).

Zhou, P.

Zhou, Q. L.

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Zhu, Y. G.

Zimer, H.

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

Acta Phys. Pol. A (1)

P. Elahi and N. Zare, “The analytical solution of rate equations in end pumped fiber lasers with minimum approximation and temperature distribution during the laser operation,” Acta Phys. Pol. A 116(4), 522–524 (2009).
[Crossref]

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Y. Y. Fan, B. He, J. T. Zhou, S. J. Dai, and C. Zhao, “Efficient heat transfer in high-power fiber lasers,” Chin. Opt. Lett. 10(11), 32–35 (2012).

Electron. Lett. (2)

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibers containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

A. J. Conduit, D. N. Payne, A. H. Hartog, and M. P. Gold, “Optical fiber diameter variations and their effect on backscatter loss measurements,” Electron. Lett. 17(8), 308–310 (1981).
[Crossref]

IEEE J. Quantum Electron. (2)

M. E. H. Assad and D. C. Brown, “Thermodynamic analysis of end-pumped fiber lasers subjected to surface cooling,” IEEE J. Quantum Electron. 49(1), 100–107 (2013).
[Crossref]

D. C. Brown and H. J. Hoffman, “Thermal, stress and thermal-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Wang, C. Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

M. Saha, S. D. Chowdhury, N. K. Shekhar, and A. Pal, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2016).

J. Chem. Phys. (1)

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (2)

W. N. Li, R. Luo, C. Li, S. Gao, C. Chang, C. Q. Hou, and B. Y. Zhao, “Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique,” J. Non-Cryst. Solids 449(1), 119–124 (2016).
[Crossref]

S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18), 848–851 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 661–666 (2014).
[Crossref]

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25(2), 025102 (2015).
[Crossref]

Laser Phys. Lett. (2)

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phase doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

S. K. Wang, S. Y. Feng, M. Wang, C. L. Yu, Q. L. Zhou, H. Y. Li, Y. X. Tang, D. P. Chen, and L. L. Hu, “Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method,” Laser Phys. Lett. 10(11), 921–928 (2013).
[Crossref]

Opt. Commun. (3)

Y. Wang, C. Q. Xu, and P. Hong, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[Crossref]

W. L. Wang, J. Y. Leng, J. Q. Cao, S. F. Guo, X. J. Xu, and Z. F. Jiang, “Method for stripping cladding light in the high power fiber laser,” Opt. Commun. 287(2), 187–191 (2013).
[Crossref]

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+-silica fiber laser cladding-pumped at 1064 nm,” Opt. Commun. 215(4), 381–387 (2003).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (3)

E. A. Savel’ev, A. V. Krivovichev, and K. M. Golant, “Clustering of Yb in silica-based glasses synthesized by SPCVD,” Opt. Mater. 62(1), 518–526 (2016).
[Crossref]

M. Sabaeian, H. Nadgaran, M. D. Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31(9), 1300–1305 (2009).
[Crossref]

F. Prudenzano, L. Mescia, A. D. Tommaso, M. Surico, and M. D. Sario, “Design and refinement of rare earth doped multicore fiber lasers,” Opt. Mater. 35(11), 1941–1946 (2013).
[Crossref]

Opt. Mater. Express (3)

Proc. SPIE (3)

T. L. Li, J. Wu, Y. H. Sun, Y. S. Wang, and Y. Ma, “An improved method for stripping cladding light in high power fiber lasers,” Proc. SPIE 9255, 92550M (2015).
[Crossref]

A. Langner, M. Such, G. Schotz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237(2), 82370F (2012).
[Crossref]

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 809021 (2009).
[Crossref]

Other (1)

http://www.ipgphotonics.com/group/view/8/Lasers/High_Power_CW_Fiber_Lasers

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 MOPA configuration for fiber performance test.
Fig. 2
Fig. 2 The RIP of preform core.
Fig. 3
Fig. 3 Cladding diameter of fiber every 0.1m interval along 110m length.
Fig. 4
Fig. 4 Images of elemental distribution in fiber core region (a) Al, (b) Si, (c) Ce, (d) Yb.
Fig. 5
Fig. 5 The core attenuation spectrum of ytterbium-doped fiber.
Fig. 6
Fig. 6 (a) Output power of the Yb/Ce co-doped fiber power amplifier with the increase of pump power; (b) thermal image of the active fiber at 4.62 kW.
Fig. 7
Fig. 7 Beam quality of fiber laser at a power of 4.62 kW.
Fig. 8
Fig. 8 Laser spectrum (e.g.4620W).

Metrics