Abstract

We report the fabrication of a semiconductor germanium fiber with a borosilicate glass cladding. A non-ohmic voltage-current behavior has been observed in germanium fiber. The experiment of the photo-induced electrical response of germanium fibers has been carried out. The germanium fiber array with only three parallel-wired fibers shows a high-speed response to modulated 1.55μm laser irradiation with up to 100 kHz repetition rate. The concept of proof of high-speed photodetectors using fabric germanium array indicates that the glass-clad germanium fibers are promising for building flexible economic large-scale high-speed devices for detecting infrared radiation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Glass-clad single-crystal germanium optical fiber

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice
Opt. Express 17(10) 8029-8035 (2009)

Mid-infrared transmission through germanium-core borosilicate glass-clad semiconductor fibers

Mustafa Ordu, Jicheng Guo, Boyin Tai, Mi K. Hong, Shyamsunder Erramilli, Siddharth Ramachandran, and Soumendra N. Basu
Opt. Mater. Express 7(9) 3107-3115 (2017)

Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers

Guowu Tang, Qi Qian, Xin Wen, Xiaodong Chen, Wangwang Liu, Min Sun, and Zhongmin Yang
Opt. Express 23(18) 23624-23633 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
    [Crossref] [PubMed]
  2. F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
    [Crossref]
  3. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
    [Crossref]
  4. A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
    [Crossref]
  5. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
    [Crossref]
  6. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
    [Crossref] [PubMed]
  7. D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
    [Crossref]
  8. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  9. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [Crossref] [PubMed]
  10. J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica-clad crystalline germanium core optical fibers,” Opt. Lett. 36(5), 687–688 (2011).
    [Crossref] [PubMed]
  11. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
    [Crossref] [PubMed]
  12. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
    [Crossref]
  13. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express 18(5), 4972–4979 (2010).
    [Crossref] [PubMed]
  14. B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48(10), 100501 (2009).
    [Crossref]
  15. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [Crossref] [PubMed]
  16. P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
    [Crossref]
  17. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, 1st Ed. (John Wiley & Sons Inc, 2004).
  18. C. Claeys and E. Simoen, eds., Germanium-Based Technologies: From Materials to Devices, 1st Ed. (Elsevier Science, 2007).
  19. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
  20. R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
    [Crossref]
  21. Responsivity Data of Biased Ge Detectors 800 - 1800 nm, Thorlabs ( https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1295 ).
  22. D. P. Mathur, R. J. McLntyre, and P. P. Webb, “A new germanium photodiode with extended long-wavelength response,” Appl. Opt. 9(8), 1842–1847 (1970).
    [Crossref] [PubMed]
  23. S. G. Dolgopolov and V. M. Klement’ev, “Sensitivity of a germanium photodetector to λ = 10.6 μm radiation,” Sov. J. Quant. Electron. 5(10), 1272–1273 (1975).
    [Crossref]
  24. Y. Oka, K. Nagasaka, and S. Narita, “Far-infrared germanium detectors,” Jpn. J. Appl. Phys. 7(6), 611–618 (1968).
    [Crossref]
  25. V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Plenum Press) (1969).
  26. DURAN Technical Data, SCHOTT Glass ( http://www.glassdynamicsllc.com/duranschott8330.html ).
  27. G. Taylor, “A method of drawing metallic filaments and a discussion of their properties and uses,” Phys. Rev. 23(5), 655–660 (1924).
    [Crossref]
  28. J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
    [Crossref]
  29. R. A. Cowley, “Raman scattering from crystals of the diamond structure,” J. Phys. France 26(11), 659–667 (1965).
    [Crossref]
  30. B. A. Weinstein and M. Cardona, “Second-order raman spectrum of germanium,” Phys. Rev. B 7(6), 2545–2551 (1973).
    [Crossref]
  31. M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1+D1 edges,” Phys. Rev. B 10(10), 4309–4323 (1974).
    [Crossref]
  32. J. Scott, “Raman spectrum of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970).
    [Crossref]
  33. E. M. Conwell, “Properties of silicon and germanium,” PROC. of the I.R. E. 40, 1327–1337 (1952).
  34. E. Rosencher and B. Vinter, Optoelectronics (Cambridge University Press, 2002).
  35. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, 1978).

2016 (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

2014 (2)

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

2013 (1)

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

2012 (1)

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

2011 (1)

2010 (4)

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express 18(5), 4972–4979 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

2007 (1)

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

2006 (2)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

2004 (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

1975 (1)

S. G. Dolgopolov and V. M. Klement’ev, “Sensitivity of a germanium photodetector to λ = 10.6 μm radiation,” Sov. J. Quant. Electron. 5(10), 1272–1273 (1975).
[Crossref]

1974 (1)

M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1+D1 edges,” Phys. Rev. B 10(10), 4309–4323 (1974).
[Crossref]

1973 (1)

B. A. Weinstein and M. Cardona, “Second-order raman spectrum of germanium,” Phys. Rev. B 7(6), 2545–2551 (1973).
[Crossref]

1970 (2)

1968 (1)

Y. Oka, K. Nagasaka, and S. Narita, “Far-infrared germanium detectors,” Jpn. J. Appl. Phys. 7(6), 611–618 (1968).
[Crossref]

1967 (1)

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

1965 (1)

R. A. Cowley, “Raman scattering from crystals of the diamond structure,” J. Phys. France 26(11), 659–667 (1965).
[Crossref]

1952 (1)

E. M. Conwell, “Properties of silicon and germanium,” PROC. of the I.R. E. 40, 1327–1337 (1952).

1924 (1)

G. Taylor, “A method of drawing metallic filaments and a discussion of their properties and uses,” Phys. Rev. 23(5), 655–660 (1924).
[Crossref]

Abouraddy, A. F.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Agarwal, A. M.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

Arnold, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Ashkin, M.

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Badding, J. V.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Ballato, J.

Bao, X. Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Bayindir, M.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Bo, L.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Brambilla, G.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Burka, L.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express 18(5), 4972–4979 (2010).
[Crossref] [PubMed]

Caluori, V.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48(10), 100501 (2009).
[Crossref]

Cardona, M.

M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1+D1 edges,” Phys. Rev. B 10(10), 4309–4323 (1974).
[Crossref]

B. A. Weinstein and M. Cardona, “Second-order raman spectrum of germanium,” Phys. Rev. B 7(6), 2545–2551 (1973).
[Crossref]

Conwell, E. M.

E. M. Conwell, “Properties of silicon and germanium,” PROC. of the I.R. E. 40, 1327–1337 (1952).

Cowley, R. A.

R. A. Cowley, “Raman scattering from crystals of the diamond structure,” J. Phys. France 26(11), 659–667 (1965).
[Crossref]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Danto, S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

Daw, M.

Deng, D. S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

Dolgopolov, S. G.

S. G. Dolgopolov and V. M. Klement’ev, “Sensitivity of a germanium photodetector to λ = 10.6 μm radiation,” Sov. J. Quant. Electron. 5(10), 1272–1273 (1975).
[Crossref]

Ellison, M.

Farrell, G.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Feldman, D. W.

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Fink, Y.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Foy, P.

Gopalan, V.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Hart, S. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Hawkins, T.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

He, R. R.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Healy, N.

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Hon, N. K.

Ismaeel, R.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Jalali, B.

Joannopoulos, J. D.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Kim, H.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Kimerling, L. C.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Klement’ev, V. M.

S. G. Dolgopolov and V. M. Klement’ev, “Sensitivity of a germanium photodetector to λ = 10.6 μm radiation,” Sov. J. Quant. Electron. 5(10), 1272–1273 (1975).
[Crossref]

Kokuoz, B.

Krishnamurthi, M.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Lee, T.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Lieber, C. M.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Lo, Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Mathur, D. P.

McDonagh, C.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

McLntyre, R. J.

McMillen, C.

Michel, J.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Morris, S.

J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica-clad crystalline germanium core optical fibers,” Opt. Lett. 36(5), 687–688 (2011).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Nagasaka, K.

Y. Oka, K. Nagasaka, and S. Narita, “Far-infrared germanium detectors,” Jpn. J. Appl. Phys. 7(6), 611–618 (1968).
[Crossref]

Narita, S.

Y. Oka, K. Nagasaka, and S. Narita, “Far-infrared germanium detectors,” Jpn. J. Appl. Phys. 7(6), 611–618 (1968).
[Crossref]

O’Mahony, C. C.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Oka, Y.

Y. Oka, K. Nagasaka, and S. Narita, “Far-infrared germanium detectors,” Jpn. J. Appl. Phys. 7(6), 611–618 (1968).
[Crossref]

Orf, N.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Orf, N. D.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

Parker, J. H.

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Peacock, A. C.

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Pickrell, G.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48(10), 100501 (2009).
[Crossref]

Podila, R.

Powers, D. R.

Prill Sempere, L.

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Rao, A. M.

Renucci, J. B.

M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1+D1 edges,” Phys. Rev. B 10(10), 4309–4323 (1974).
[Crossref]

Renucci, M. A.

M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1+D1 edges,” Phys. Rev. B 10(10), 4309–4323 (1974).
[Crossref]

Reppert, J.

Rice, R.

Rice, R. R.

Russell, P. S.

Sazio, P. J. A.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Schmidt, M. A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

Scott, B.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48(10), 100501 (2009).
[Crossref]

Scott, J.

J. Scott, “Raman spectrum of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970).
[Crossref]

Semenova, Y.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Shapira, O.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Sharma, S. R.

Shori, R.

Soci, C.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Sparks, J. R.

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Stafsudd, O.

Stolen, R.

Taylor, G.

G. Taylor, “A method of drawing metallic filaments and a discussion of their properties and uses,” Phys. Rev. 23(5), 655–660 (1924).
[Crossref]

Tyagi, H. K.

Viens, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Wang, D.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Wang, K.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48(10), 100501 (2009).
[Crossref]

Wang, P.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Webb, P. P.

Weinstein, B. A.

B. A. Weinstein and M. Cardona, “Second-order raman spectrum of germanium,” Phys. Rev. B 7(6), 2545–2551 (1973).
[Crossref]

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Wu, Q.

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Yazgan-Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
[Crossref] [PubMed]

Zeyher, R.

M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1+D1 edges,” Phys. Rev. B 10(10), 4309–4323 (1974).
[Crossref]

Zhang, A.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Adv. Mater. (1)

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Adv. Optical Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Optical Mater. 4(1), 13–36 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

P. Wang, C. C. O’Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett. 102(1), 011111 (2013).
[Crossref]

J. Nanosci. Nanotechnol. (1)

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[Crossref] [PubMed]

J. Phys. France (1)

R. A. Cowley, “Raman scattering from crystals of the diamond structure,” J. Phys. France 26(11), 659–667 (1965).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Oka, K. Nagasaka, and S. Narita, “Far-infrared germanium detectors,” Jpn. J. Appl. Phys. 7(6), 611–618 (1968).
[Crossref]

Laser Photonics Rev. (1)

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

Mater. Today (1)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Nanophotonics (1)

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Nat. Photonics (1)

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Nature (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-Insulator-Semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Opt. Eng. (1)

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48(10), 100501 (2009).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (2)

G. Taylor, “A method of drawing metallic filaments and a discussion of their properties and uses,” Phys. Rev. 23(5), 655–660 (1924).
[Crossref]

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Phys. Rev. B (3)

B. A. Weinstein and M. Cardona, “Second-order raman spectrum of germanium,” Phys. Rev. B 7(6), 2545–2551 (1973).
[Crossref]

M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1+D1 edges,” Phys. Rev. B 10(10), 4309–4323 (1974).
[Crossref]

J. Scott, “Raman spectrum of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970).
[Crossref]

PROC. of the I.R. E. (1)

E. M. Conwell, “Properties of silicon and germanium,” PROC. of the I.R. E. 40, 1327–1337 (1952).

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Sov. J. Quant. Electron. (1)

S. G. Dolgopolov and V. M. Klement’ev, “Sensitivity of a germanium photodetector to λ = 10.6 μm radiation,” Sov. J. Quant. Electron. 5(10), 1272–1273 (1975).
[Crossref]

Other (7)

E. Rosencher and B. Vinter, Optoelectronics (Cambridge University Press, 2002).

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, 1978).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, 1st Ed. (John Wiley & Sons Inc, 2004).

C. Claeys and E. Simoen, eds., Germanium-Based Technologies: From Materials to Devices, 1st Ed. (Elsevier Science, 2007).

Responsivity Data of Biased Ge Detectors 800 - 1800 nm, Thorlabs ( https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1295 ).

V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Plenum Press) (1969).

DURAN Technical Data, SCHOTT Glass ( http://www.glassdynamicsllc.com/duranschott8330.html ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Viscosity curves of borosilicate glass cladding [26] and germanium core [25] at high temperatures.
Fig. 2
Fig. 2 SEM photographs of Ge fibers with (a) 600 μm OD and core diameter of 125 μm and (b) 260μm OD and core diameter of 21 μm.
Fig. 3
Fig. 3 Spontaneous Raman scattering spectra of starting single crystalline 3mm Ge rod, glass-clad fibers with 125 μm Ge core and 21 μm Ge core in range of (a) 200-600 cm−1 and (b) 600-1000 cm−1 . Note that in the latter range, the intensity is multiplied by a factor of 10.
Fig. 4
Fig. 4 (a) Sketch of electrical contact to external circuit by connecting Ge fiber. (b) Current-voltage of single Ge fiber with CW 1.55μm laser irradiation.
Fig. 5
Fig. 5 Schematic of measuring optoelectronic response of samples 1# & 2# under modulated 1.55 µm laser.
Fig. 6
Fig. 6 Optoelectronic response of sample 1# with single Ge fiber under modulated 1.55 μm radiation with repetition rates of (a) 10 kHz, (b) 100 kHz and (c) 300 kHz.
Fig. 7
Fig. 7 Optoelectronic response of sample 2# with parallel-wired three Ge fibers under modulated 1.55 μm radiation with repetition rates of (a) 10 kHz, (b) 100 kHz and (c) 1 MHz.
Fig. 8
Fig. 8 Definitions of noise intensity Inoise, peak signal intensity Isignal, max, rise time τR and decay time τD of generated voltage trace.

Tables (1)

Tables Icon

Table 1 Parameters of optoelectronic response of sample 1# and 2# under modulated 1.55 µm irradiation

Metrics