Abstract

Energy transfer mechanisms have been quantitatively studied in Er3+/Ho3+ codoped tellurite and bismuth glass. Upon an excitation of 980 nm, an enhanced Er3+:2.7 μm emission was observed when Ho3+ was added to tellurite glass. Using Dexter’s theory, it is clearly shown that the efficiency of Er3+:4I13/2 → Ho3+:5I7 energy transfer is higher in tellurite glass than in bismuth glass. Based on upconversion and near-infrared spectra, the cross relaxation Er3+:4I13/2 + Ho3+:5I6 → Er3+:4I15/2 + Ho3+:5F5 is comparatively effective in tellurite glass, where it depletes the population of Er3+:4I13/2 level. The excellent spectroscopic characteristics indicate Er3+/Ho3+ co-doped tellurite glass has potential application for mid-infrared laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ho3+/Yb3+-codoped germanate–tellurite glasses for 2.0  μm emission performance

Ya-Pei Peng, Yanyan Guo, Junjie Zhang, and Long Zhang
Appl. Opt. 53(8) 1564-1569 (2014)

Synthesis, theoretical analysis, and characterization of highly Er3+ doped fluoroaluminate–tellurite glass with 2.7 μm emission

Ying Tian, Xufeng Jing, Bingpeng Li, Pengcheng Li, Yinyan Li, Ruoshan Lei, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(10) 3274-3285 (2016)

Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang
Opt. Mater. Express 5(12) 2964-2977 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
    [Crossref] [PubMed]
  2. G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
    [Crossref]
  3. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett. 35(15), 2544–2546 (2010).
    [Crossref] [PubMed]
  4. L. Zhang and T. Xue, “Discrepancies between Pr3+ and Ho3+ de-sensitized Er3+:2.7 μm emission,” J. Lumin. 178, 22–26 (2016).
    [Crossref]
  5. L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
    [Crossref]
  6. F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho3+/Er3+-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
    [Crossref] [PubMed]
  7. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy 3+ - doped and Dy 3+, Tm 3+ -codped Ge-Ga-S-CdI 2 chalcohalide glasses,” Opt. Express 17(17), 15350–15358 (2009).
    [Crossref] [PubMed]
  8. Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
    [Crossref]
  9. P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” Chin. Opt. Lett. 14(8), 081601 (2016).
    [Crossref]
  10. Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
    [Crossref]
  11. Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
    [Crossref]
  12. T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
    [Crossref] [PubMed]
  13. G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
    [Crossref]
  14. S. C. Ardelean, R. C. Lucacel, and O. Hulpus, “EPR and FT-IR spectroscopic studies of B2O3Bi2O3MnO glasses,” Solid State Sci. 7(11), 1438–1442 (2005).
    [Crossref]
  15. A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
    [Crossref]
  16. G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
    [Crossref]
  17. A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
    [Crossref]
  18. H. Fan, G. Gao, G. Wang, and L. Hu, “Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses,” Solid State Sci. 12(4), 541–545 (2010).
    [Crossref]
  19. B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
    [Crossref]
  20. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
    [Crossref]
  21. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  22. G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  23. G. Zhao, P.-W. Kuan, H. Fan, and L. Hu, “Enhanced green and red upconversion and 2.7μm emission from Er3+/Tm3+ co-doped bismuth germanate glass,” Opt. Mater. 35(5), 910–914 (2013).
    [Crossref]
  24. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1–3), 66–78 (1998).
    [Crossref]
  25. T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
    [Crossref]
  26. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
    [Crossref] [PubMed]
  27. S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
    [Crossref] [PubMed]
  28. H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
    [Crossref]
  29. F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
    [Crossref]
  30. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
    [Crossref] [PubMed]
  31. G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
    [Crossref]
  32. G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
    [Crossref] [PubMed]
  33. R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
    [Crossref]
  34. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  35. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
    [Crossref]
  36. Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
    [Crossref]
  37. L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
    [Crossref]
  38. D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer betweenTm3+ ions in fluoroindogallate glasses,” Phys. Rev. B 66(2), 024207 (2002).
    [Crossref]

2016 (5)

L. Zhang and T. Xue, “Discrepancies between Pr3+ and Ho3+ de-sensitized Er3+:2.7 μm emission,” J. Lumin. 178, 22–26 (2016).
[Crossref]

Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” Chin. Opt. Lett. 14(8), 081601 (2016).
[Crossref]

2015 (2)

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

2014 (3)

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho3+/Er3+-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
[Crossref] [PubMed]

2013 (4)

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
[Crossref]

G. Zhao, P.-W. Kuan, H. Fan, and L. Hu, “Enhanced green and red upconversion and 2.7μm emission from Er3+/Tm3+ co-doped bismuth germanate glass,” Opt. Mater. 35(5), 910–914 (2013).
[Crossref]

2012 (3)

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

2011 (2)

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
[Crossref]

2010 (3)

A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
[Crossref]

H. Fan, G. Gao, G. Wang, and L. Hu, “Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses,” Solid State Sci. 12(4), 541–545 (2010).
[Crossref]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett. 35(15), 2544–2546 (2010).
[Crossref] [PubMed]

2009 (2)

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy 3+ - doped and Dy 3+, Tm 3+ -codped Ge-Ga-S-CdI 2 chalcohalide glasses,” Opt. Express 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
[Crossref]

2005 (1)

S. C. Ardelean, R. C. Lucacel, and O. Hulpus, “EPR and FT-IR spectroscopic studies of B2O3Bi2O3MnO glasses,” Solid State Sci. 7(11), 1438–1442 (2005).
[Crossref]

2002 (1)

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer betweenTm3+ ions in fluoroindogallate glasses,” Phys. Rev. B 66(2), 024207 (2002).
[Crossref]

1998 (1)

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1–3), 66–78 (1998).
[Crossref]

1997 (1)

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

1996 (2)

1994 (1)

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

1993 (1)

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

1992 (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

1982 (1)

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1948 (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
[Crossref]

Ajebli, K.

A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
[Crossref]

Ardelean, S. C.

S. C. Ardelean, R. C. Lucacel, and O. Hulpus, “EPR and FT-IR spectroscopic studies of B2O3Bi2O3MnO glasses,” Solid State Sci. 7(11), 1438–1442 (2005).
[Crossref]

Bensaid, H.

A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
[Crossref]

Bettinelli, M.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1–3), 66–78 (1998).
[Crossref]

Chagraoui, A.

A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
[Crossref]

Chai, G.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Chen, D.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho3+/Er3+-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
[Crossref] [PubMed]

Chen, R.

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

Chen, X.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Dai, S.

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

de Sousa, D. F.

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer betweenTm3+ ions in fluoroindogallate glasses,” Phys. Rev. B 66(2), 024207 (2002).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Dimitrov, V.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

Dong, G.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1–3), 66–78 (1998).
[Crossref]

Ehrt, D.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1–3), 66–78 (1998).
[Crossref]

Fan, H.

G. Zhao, P.-W. Kuan, H. Fan, and L. Hu, “Enhanced green and red upconversion and 2.7μm emission from Er3+/Tm3+ co-doped bismuth germanate glass,” Opt. Mater. 35(5), 910–914 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

H. Fan, G. Gao, G. Wang, and L. Hu, “Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses,” Solid State Sci. 12(4), 541–545 (2010).
[Crossref]

Fan, S.

Fan, X.

Fang, Y.

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
[Crossref]

Gao, G.

H. Fan, G. Gao, G. Wang, and L. Hu, “Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses,” Solid State Sci. 12(4), 541–545 (2010).
[Crossref]

Gomes, L.

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Guo, H.

Hanada, T.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Hewak, D. W.

Hou, C.

Hu, L.

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” Chin. Opt. Lett. 14(8), 081601 (2016).
[Crossref]

F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho3+/Er3+-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
[Crossref] [PubMed]

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

G. Zhao, P.-W. Kuan, H. Fan, and L. Hu, “Enhanced green and red upconversion and 2.7μm emission from Er3+/Tm3+ co-doped bismuth germanate glass,” Opt. Mater. 35(5), 910–914 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
[Crossref]

H. Fan, G. Gao, G. Wang, and L. Hu, “Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses,” Solid State Sci. 12(4), 541–545 (2010).
[Crossref]

Hu, T.

Huang, F.

F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho3+/Er3+-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
[Crossref] [PubMed]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Hudson, D. D.

Hulpus, O.

S. C. Ardelean, R. C. Lucacel, and O. Hulpus, “EPR and FT-IR spectroscopic studies of B2O3Bi2O3MnO glasses,” Solid State Sci. 7(11), 1438–1442 (2005).
[Crossref]

Izumitani, T.

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

Jackson, S. D.

Jing, X.

Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kuan, P.

Kuan, P.-W.

G. Zhao, P.-W. Kuan, H. Fan, and L. Hu, “Enhanced green and red upconversion and 2.7μm emission from Er3+/Tm3+ co-doped bismuth germanate glass,” Opt. Mater. 35(5), 910–914 (2013).
[Crossref]

Kuroda, H.

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

Li, B.

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

Li, W.

Li, X.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Li, Z.

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

Liu, L.

Liu, W.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Liu, X.

Lu, M.

Lucacel, R. C.

S. C. Ardelean, R. C. Lucacel, and O. Hulpus, “EPR and FT-IR spectroscopic studies of B2O3Bi2O3MnO glasses,” Solid State Sci. 7(11), 1438–1442 (2005).
[Crossref]

Lucas, P.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Ma, Z.

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

Mihailova, B.

B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
[Crossref]

Morinaga, K.

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Moussaoui, A.

A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
[Crossref]

Nageno, Y.

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Nie, Q.

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

Nunes, L. A. O.

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer betweenTm3+ ions in fluoroindogallate glasses,” Phys. Rev. B 66(2), 024207 (2002).
[Crossref]

Ofelt, G.

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ohyagi, T.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Payne, D. N.

Peng, B.

Peng, M.

Petrov, T.

B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
[Crossref]

Qian, Q.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Qiu, J.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Ranieri, I.

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Sakka, S.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

Samson, B. N.

Schweizer, T.

Shen, X.

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

Shivachev, B. L.

B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
[Crossref]

Singh, P.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Soga, N.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Speghini, A.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1–3), 66–78 (1998).
[Crossref]

Sun, M.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Tairi, A.

A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
[Crossref]

Takebe, H.

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Tanabe, S.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Tang, G.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Tao, H.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Tarelho, L.

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Tian, Y.

Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
[Crossref]

Titorenkova, R.

B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
[Crossref]

Toratani, H.

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

Wang, F.

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

Wang, G.

H. Fan, G. Gao, G. Wang, and L. Hu, “Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses,” Solid State Sci. 12(4), 541–545 (2010).
[Crossref]

Wang, X.

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

Wang, Y.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy 3+ - doped and Dy 3+, Tm 3+ -codped Ge-Ga-S-CdI 2 chalcohalide glasses,” Opt. Express 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Wei, T.

Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

Wen, X.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Wondraczek, L.

Wu, G.

Xu, J.

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Xu, S.

Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

Xu, T.

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

Xue, T.

L. Zhang and T. Xue, “Discrepancies between Pr3+ and Ho3+ de-sensitized Er3+:2.7 μm emission,” J. Lumin. 178, 22–26 (2016).
[Crossref]

Yadav, A. K.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Yang, A.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Yang, Y.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Yang, Z.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
[Crossref]

Yoneda, H.

B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
[Crossref]

Yu, C.

Zhang, B.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Zhang, J.

Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
[Crossref]

Zhang, L.

L. Zhang and T. Xue, “Discrepancies between Pr3+ and Ho3+ de-sensitized Er3+:2.7 μm emission,” J. Lumin. 178, 22–26 (2016).
[Crossref]

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” Chin. Opt. Lett. 14(8), 081601 (2016).
[Crossref]

L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
[Crossref]

Zhang, N.

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Zhang, Q.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Zhang, X.

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

Zhang, Y.

Zhao, G.

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
[Crossref]

G. Zhao, P.-W. Kuan, H. Fan, and L. Hu, “Enhanced green and red upconversion and 2.7μm emission from Er3+/Tm3+ co-doped bismuth germanate glass,” Opt. Mater. 35(5), 910–914 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

Zhu, T.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Zou, K.

Ann. Phys. (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
[Crossref]

Ceram. Int. (1)

Y. Fang, G. Zhao, J. Xu, N. Zhang, Z. Ma, and L. Hu, “Energy transfer and 1.8μm emission in Yb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Chin. Opt. Lett. (2)

J. Alloys Compd. (2)

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid, and A. Moussaoui, “New tellurite glasses and crystalline phases in the Bi2O3–CaO–TeO2 system: Synthesis and characterization,” J. Alloys Compd. 495(1), 67–71 (2010).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

J. Appl. Phys. (2)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, “Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass,” J. Appl. Phys. 110(9), 093106 (2011).
[Crossref]

J. Chem. Phys. (2)

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Lumin. (1)

L. Zhang and T. Xue, “Discrepancies between Pr3+ and Ho3+ de-sensitized Er3+:2.7 μm emission,” J. Lumin. 178, 22–26 (2016).
[Crossref]

J. Mater. Sci. Technol. (1)

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Properties and Structures of Bi2O3–B2O3–TeO2 Glass,” J. Mater. Sci. Technol. 29(3), 209–214 (2013).
[Crossref]

J. Non-Cryst. Solids (3)

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1–3), 66–78 (1998).
[Crossref]

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

J. Phys. Chem. C (1)

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+,Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

J. Rare Earths (1)

Z. Li, T. Xu, X. Shen, S. Dai, X. Wang, Q. Nie, and X. Zhang, “Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses,” J. Rare Earths 29(2), 105–108 (2011).
[Crossref]

Mater. Res. Bull. (1)

Y. Tian, T. Wei, X. Jing, J. Zhang, and S. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (3)

G. Zhao, P.-W. Kuan, H. Fan, and L. Hu, “Enhanced green and red upconversion and 2.7μm emission from Er3+/Tm3+ co-doped bismuth germanate glass,” Opt. Mater. 35(5), 910–914 (2013).
[Crossref]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

R. Chen, Y. Tian, B. Li, F. Wang, X. Jing, J. Zhang, and S. Xu, “2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses,” Opt. Mater. 49, 116–122 (2015).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (2)

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer betweenTm3+ ions in fluoroindogallate glasses,” Phys. Rev. B 66(2), 024207 (2002).
[Crossref]

Phys. Rev. B Condens. Matter (2)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

RSC Advances (1)

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Sci. Rep. (1)

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF μm -crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

Scr. Mater. (1)

B. L. Shivachev, T. Petrov, H. Yoneda, R. Titorenkova, and B. Mihailova, “Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses,” Scr. Mater. 61(5), 493–496 (2009).
[Crossref]

Solid State Sci. (2)

S. C. Ardelean, R. C. Lucacel, and O. Hulpus, “EPR and FT-IR spectroscopic studies of B2O3Bi2O3MnO glasses,” Solid State Sci. 7(11), 1438–1442 (2005).
[Crossref]

H. Fan, G. Gao, G. Wang, and L. Hu, “Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses,” Solid State Sci. 12(4), 541–545 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Raman spectra of TWL and BGN samples.
Fig. 2
Fig. 2 Absorption spectra of prepared samples (1 mm thickness).
Fig. 3
Fig. 3 Mid-infrared fluorescence spectra of samples pumped by 980 nm laser diode.
Fig. 4
Fig. 4 Measured fluorescence spectrum of samples from 1300 nm to 2200 nm pumped at 980 nm.
Fig. 5
Fig. 5 Upconversion luminescence spectra of samples under 980 nm LD excitation.
Fig. 6
Fig. 6 Energy level diagram of Er3+ and Ho3+ ions with involved energy transfer mechanism.

Tables (2)

Tables Icon

Table 1 J-O intensity parameters Ωλ, spontaneous radiative transition probability (Arad), fluorescence branching ratios (β), and radiative lifetime (τR) of excited levels of Er3+ in single and codoped samples.

Tables Icon

Table 2 Calculated microparameters CDA, CAD for the two Er3+ → Ho3+ energy transfer processes (ET3 and ET4). Number (#) of phonons needed to assist energy transfer, as well as the percentage of each phonon participation (%) in the process.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ e m = λ 4 A r a d 8 π c n 2 × λ I ( λ ) λ I ( λ ) d λ ,
Er 3 + : 2 H 11 / 2 + Ho 3 + : 5 I 8 Er 3 + : 4 I 15 / 2 + Ho 3 + : 5 F 4
Er 3 + : 4 S 3 / 2 + Ho 3 + : 5 I 8 Er 3 + : 4 I 15 / 2 + Ho 3 + : 5 S 2
Er 3 + : 4 I 11 / 2 + Ho 3 + : 5 I 8 Er 3 + : 4 I 15 / 2 + Ho 3 + : 5 I 6
Er 3 + : 4 I 13 / 2 + Ho 3 + : 5 I 8 Er 3 + : 4 I 15 / 2 + Ho 3 + : 5 I 7
Er 3 + : 4 I 11 / 2 + Ho 3 + : 5 I 6 Er 3 + : 4 I 15 / 2 + Ho 3 + : 5 F 4
Er 3 + : 4 I 13 / 2 + Ho 3 + : 5 I 6 Er 3 + : 4 I 15 / 2 + Ho 3 + : 5 F 5

Metrics