Abstract

Direct laser writing via two photon polymerization has enabled previously unavailable degrees of freedom in the additive fabrication of micro-to-meso scale structures. The structures produced by these techniques are ideally suited to create optical devices which operate from the THz regime to the near infrared spectrum into the visible spectral range. Here we report on the infrared dielectric response of two monomers IP-dip and IP-L after polymerization which are frequently employed in commercial two photon lithography tools from nanoscribe over the spectral range of 250 cm−1 to 6000 cm−1. A parameterized dielectric function model is presented and discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic optical response of SU-8 upon UV treatment

Alok Ghanekar, Matthew Ricci, Yanpei Tian, Otto Gregory, and Yi Zheng
Opt. Mater. Express 8(7) 2017-2025 (2018)

Three-dimensional multi-photon direct laser writing with variable repetition rate

Joachim Fischer, Jonathan B. Mueller, Johannes Kaschke, Thomas J. A. Wolf, Andreas-Neil Unterreiner, and Martin Wegener
Opt. Express 21(22) 26244-26260 (2013)

Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals

Amir Tal, Yun-Sheng Chen, Henry E. Williams, Raymond C. Rumpf, and Stephen M. Kuebler
Opt. Express 15(26) 18283-18293 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
    [Crossref] [PubMed]
  2. J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 5, 438–443 (2016).
    [Crossref]
  3. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [Crossref] [PubMed]
  4. M. Schröder, M. Bülters, C. von Kopylow, and R. Bergmann, “Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects,” J. Europ. Opt. Soc. Rap. 7, 12027 (2012).
    [Crossref]
  5. J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
    [Crossref] [PubMed]
  6. S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
    [Crossref]
  7. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
    [Crossref]
  8. Nanoscribe, “Application examples, http://www.nanoscribe.de/en ,” (2016). (accessed 2016/11/21).
  9. H. G. Tompkins, T. Tiwald, C. Bungay, and A. E. Hooper, “Use of molecular vibrations to analyze very thin films with infrared ellipsometry,” J. Phys. Chem. B 108, 3777–3780 (2004).
    [Crossref]
  10. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
    [Crossref]
  11. R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455, 248–255 (2004).
    [Crossref]
  12. T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
    [Crossref]
  13. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
    [Crossref] [PubMed]
  14. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
    [Crossref]
  15. S. Dirk, R. Rasberry, and K. Rahimian, “Polymeric matrix materials for infrared metamaterials,” (2014). US Patent8,703,391.

2016 (3)

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 5, 438–443 (2016).
[Crossref]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
[Crossref] [PubMed]

2015 (1)

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

2012 (3)

M. Schröder, M. Bülters, C. von Kopylow, and R. Bergmann, “Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects,” J. Europ. Opt. Soc. Rap. 7, 12027 (2012).
[Crossref]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref] [PubMed]

2011 (1)

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

2009 (2)

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[Crossref] [PubMed]

2004 (2)

H. G. Tompkins, T. Tiwald, C. Bungay, and A. E. Hooper, “Use of molecular vibrations to analyze very thin films with infrared ellipsometry,” J. Phys. Chem. B 108, 3777–3780 (2004).
[Crossref]

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455, 248–255 (2004).
[Crossref]

Atwater, H. A.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

Balthasar, G.

Bauer, J.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 5, 438–443 (2016).
[Crossref]

Bergmann, R.

M. Schröder, M. Bülters, C. von Kopylow, and R. Bergmann, “Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects,” J. Europ. Opt. Soc. Rap. 7, 12027 (2012).
[Crossref]

Boosalis, A.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

Booso, B.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[Crossref] [PubMed]

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Braun, P.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

Bückmann, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Bülters, M.

M. Schröder, M. Bülters, C. von Kopylow, and R. Bergmann, “Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects,” J. Europ. Opt. Soc. Rap. 7, 12027 (2012).
[Crossref]

Bungay, C.

H. G. Tompkins, T. Tiwald, C. Bungay, and A. E. Hooper, “Use of molecular vibrations to analyze very thin films with infrared ellipsometry,” J. Phys. Chem. B 108, 3777–3780 (2004).
[Crossref]

Cao, B.

Chanda, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Chen, L.

Chen, V. H.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

Chen, Y.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Dirk, S.

S. Dirk, R. Rasberry, and K. Rahimian, “Polymeric matrix materials for infrared metamaterials,” (2014). US Patent8,703,391.

Eberl, C.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Franklin, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Freude, W.

Frölich, A.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
[Crossref]

Herzinger, C.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

Hillerkuss, D.

Hofmann, T.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[Crossref] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

Hooper, A. E.

H. G. Tompkins, T. Tiwald, C. Bungay, and A. E. Hooper, “Use of molecular vibrations to analyze very thin films with infrared ellipsometry,” J. Phys. Chem. B 108, 3777–3780 (2004).
[Crossref]

Hu, J.

Jordan, M.

Kadic, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Kaschke, J.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Kennerknecht, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Khabiboulline, E. T.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

Koos, C.

Kraft, O.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 5, 438–443 (2016).
[Crossref]

Kühne, P.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

Leuthold, J.

Li, R.

Lin, Y.

Lindenmann, N.

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Peng, S.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

Rahimian, K.

S. Dirk, R. Rasberry, and K. Rahimian, “Polymeric matrix materials for infrared metamaterials,” (2014). US Patent8,703,391.

Rasberry, R.

S. Dirk, R. Rasberry, and K. Rahimian, “Polymeric matrix materials for infrared metamaterials,” (2014). US Patent8,703,391.

Sarangan, A.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[Crossref] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

Schmidt, D.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[Crossref] [PubMed]

Schmogrow, R.

Schröder, M.

M. Schröder, M. Bülters, C. von Kopylow, and R. Bergmann, “Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects,” J. Europ. Opt. Soc. Rap. 7, 12027 (2012).
[Crossref]

Schroer, A.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 5, 438–443 (2016).
[Crossref]

Schubert, E.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[Crossref] [PubMed]

Schubert, M.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[Crossref] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

Schwaiger, R.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 5, 438–443 (2016).
[Crossref]

Skomski, R.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

Stenger, N.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Synowicki, R.

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455, 248–255 (2004).
[Crossref]

Thiel, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Tiwald, T.

H. G. Tompkins, T. Tiwald, C. Bungay, and A. E. Hooper, “Use of molecular vibrations to analyze very thin films with infrared ellipsometry,” J. Phys. Chem. B 108, 3777–3780 (2004).
[Crossref]

Tiwald, T. E.

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455, 248–255 (2004).
[Crossref]

Tompkins, H. G.

H. G. Tompkins, T. Tiwald, C. Bungay, and A. E. Hooper, “Use of molecular vibrations to analyze very thin films with infrared ellipsometry,” J. Phys. Chem. B 108, 3777–3780 (2004).
[Crossref]

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

von Kopylow, C.

M. Schröder, M. Bülters, C. von Kopylow, and R. Bergmann, “Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects,” J. Europ. Opt. Soc. Rap. 7, 12027 (2012).
[Crossref]

Wang, C.

Wegener, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Woollam, J.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

Wu, S.-T.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Zhang, R.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

Zhao, X.

Zhu, A.

Zhu, X.

ACS Photon. (1)

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photon. 3, 1131–1137 (2016).
[Crossref]

Adv. Mater. (1)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. Herzinger, J. Woollam, M. Schubert, and E. Schubert, “Thz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[Crossref]

J. Europ. Opt. Soc. Rap. (1)

M. Schröder, M. Bülters, C. von Kopylow, and R. Bergmann, “Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects,” J. Europ. Opt. Soc. Rap. 7, 12027 (2012).
[Crossref]

J. Phys. Chem. B (1)

H. G. Tompkins, T. Tiwald, C. Bungay, and A. E. Hooper, “Use of molecular vibrations to analyze very thin films with infrared ellipsometry,” J. Phys. Chem. B 108, 3777–3780 (2004).
[Crossref]

Nat. Comm. (1)

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Comm. 6, 7337 (2015).
[Crossref]

Nat. Mater. (1)

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 5, 438–443 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Thin Solid Films (1)

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455, 248–255 (2004).
[Crossref]

Other (3)

S. Dirk, R. Rasberry, and K. Rahimian, “Polymeric matrix materials for infrared metamaterials,” (2014). US Patent8,703,391.

Nanoscribe, “Application examples, http://www.nanoscribe.de/en ,” (2016). (accessed 2016/11/21).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (A) and (C) Experimental (dashed green line) and best-model calculated Ψ data (solid red line) for the monomer IP-Dip (A) and IP-L (C) obtained at Φa = 65°. Vertical dash marks in (A) and (C) indicate the oscillator center energies listed in Tab. 1 and Tab. 2 below. (B) and (D) Experimental (dashed green line) and best-model calculated Δ data (solid red line) for IP-Dip (B) and IP-L (D) obtained at Φa = 65°.
Fig. 2
Fig. 2 Best-model calculated real (ε1(ω)) and imaginary (ε2(ω)) part of the complex dielectric function ε(ω) for IP-Dip are shown in panels (A) and (B), respectively. Similarly, (C) and (D) depict ε1(ω) and ε2(ω) for IP-L. Dashed lines in black represent the dielectric response of SU-8 for comparison. The major contributions to the dispersive behavior of both IP-Dip and IP-L occur between 1000 and 2000 cm−1. The best-model parameters are given in Tab. 1 and Tab. 2.

Tables (2)

Tables Icon

Table 1 IP-Dip best-fit oscillator parameters

Tables Icon

Table 2 IP-L best-fit oscillator parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε = ε 1 + i ε 2 = ε + i Lor ( A , Γ , ω 0 ) + i Gau ( A , Γ , ω 0 ) ,
ε 2 Lor ( ω ) = A Γ 2 ω 0 ω ( ω 0 2 ω 2 ) + Γ 2 ω 2 ,
ε 2 Gau ( ω ) = A e ( ω ω 0 / f Γ ) + Ae ( ω + ω 0 / f Γ ) ,

Metrics