Abstract

We report on a detailed comparative study of the spectroscopic and thermo-optic properties of tetragonal Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals indicating their suitability for highly-efficient microchip lasers diode-pumped at ~791 nm and operating at ~1.91 μm. An a-cut 8 at.% Tm:LiYF4 micro-laser generated 3.1 W of linearly polarized output at 1904 nm with a slope efficiency of η = 72% and a laser threshold of only 0.24 W. The internal loss for this crystal is as low as 0.0011 cm−1. For 8 at.% Tm:LiGdF4 and 12 at.% Tm:LiLuF4 lasers, the output power reached ~2 W and η was 65% and 52%, respectively. The thermal lens in all Tm:LiLnF4 crystals is weak, positive and low-astigmatic. The potential for the Tm:LiLnF4 lasers to operate beyond ~2 μm due to a vibronic coupling has been proved. The Tm:LiYF4 vibronic laser generated 375 mW at 2026-2044 nm with η = 31%. The Tm:LiLnF4 crystals are very promising for passively Q-switched microchip lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microchip laser operation of Tm,Ho:KLu(WO4)2 crystal

Pavel Loiko, Josep Maria Serres, Xavier Mateos, Konstantin Yumashev, Nikolai Kuleshov, Valentin Petrov, Uwe Griebner, Magdalena Aguiló, and Francesc Díaz
Opt. Express 22(23) 27976-27984 (2014)

Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber

J. M. Serres, P. Loiko, X. Mateos, V. Jambunathan, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz
Appl. Opt. 55(14) 3757-3763 (2016)

Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov
J. Opt. Soc. Am. B 33(11) D19-D27 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
    [Crossref]
  2. M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
    [Crossref]
  3. X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
    [Crossref]
  4. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
    [Crossref]
  5. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
    [Crossref]
  6. R. Faoro, M. Kadankov, D. Parisi, S. Veronesi, M. Tonelli, V. Petrov, U. Griebner, M. Segura, and X. Mateos, “Passively Q-switched Tm:YLF laser,” Opt. Lett. 37(9), 1517–1519 (2012).
    [Crossref] [PubMed]
  7. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
    [Crossref]
  8. N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 microm,” Opt. Lett. 34(22), 3559–3561 (2009).
    [Crossref] [PubMed]
  9. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 microm,” Opt. Lett. 32(14), 2040–2042 (2007).
    [Crossref] [PubMed]
  10. B. Oreshkov, S. Veronesi, M. Tonelli, A. di Lieto, V. Petrov, U. Griebner, X. Mateos, and I. Buchvarov, “Tm3+:LiGdF4 Laser, passively Q-switched with a Cr2+:ZnSe saturable absorber,” IEEE Photonics J. 7(3), 1502206 (2015).
  11. H. Yu, V. Petrov, U. Griebner, D. Parisi, S. Veronesi, and M. Tonelli, “Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy,” Opt. Lett. 37(13), 2544–2546 (2012).
    [Crossref] [PubMed]
  12. J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2–3), 255–267 (1999).
    [Crossref]
  13. J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  14. J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
    [Crossref] [PubMed]
  15. M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
    [Crossref]
  16. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
    [Crossref] [PubMed]
  17. P. Loiko, J. M. Serres, X. Mateos, H. Yu, H. Zhang, J. Liu, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Thermal lensing and multi-watt microchip laser operation of Yb:YCOB crystals,” IEEE Photonics J. 8(3), 1501312–1–12 (2016).
  18. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer, 1997).
  19. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  20. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  21. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
    [Crossref]
  22. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  23. K. Yumashev and P. Loiko, “Thermal stresses and end-bulging in the laser disc from a tetragonal crystal: The case of LiYF4,” Laser Phys. 25(6), 065004 (2015).
    [Crossref]
  24. F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser,” Opt. Express 12(9), 1982–1989 (2004).
    [Crossref] [PubMed]
  25. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Microchip laser operation of Tm,Ho:KLu(WO4)2 crystal,” Opt. Express 22(23), 27976–27984 (2014).
    [Crossref] [PubMed]
  26. X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
    [Crossref]
  27. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
    [Crossref]
  28. M. Dulick, G. E. Faulkner, N. J. Cockroft, and D. C. Nguyen, “Spectroscopy and dynamics of upconversion in Tm3+:YLiF4,” J. Lumin. 48–49, 517–521 (1991).
    [Crossref]
  29. S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
    [Crossref]
  30. P. Loiko, F. Druon, P. Georges, B. Viana, and K. Yumashev, “Thermo-optic characterization of Yb:CaGdAlO4 laser crystal,” Opt. Mater. Express 4(11), 2241–2249 (2014).
    [Crossref]
  31. K. V. Yumashev, A. N. Zakharova, and P. A. Loiko, “Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals,” Laser Phys. 26(6), 065002 (2016).
    [Crossref]
  32. P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals,” Appl. Opt. 52(4), 698–705 (2013).
    [Crossref] [PubMed]
  33. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref] [PubMed]
  34. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  35. T. Yokozawa, J. Izawa, and H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145(1–6), 98–100 (1998).
    [Crossref]
  36. G. L. Bourdet and G. Lescroart, “Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser,” Appl. Opt. 38(15), 3275–3281 (1999).
    [Crossref] [PubMed]
  37. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
    [Crossref]

2016 (3)

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

K. V. Yumashev, A. N. Zakharova, and P. A. Loiko, “Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals,” Laser Phys. 26(6), 065002 (2016).
[Crossref]

2015 (2)

2014 (4)

2013 (1)

2012 (2)

2011 (1)

2009 (2)

X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
[Crossref]

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 microm,” Opt. Lett. 34(22), 3559–3561 (2009).
[Crossref] [PubMed]

2008 (3)

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[Crossref]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

2007 (1)

2006 (1)

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

2004 (2)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser,” Opt. Express 12(9), 1982–1989 (2004).
[Crossref] [PubMed]

1999 (2)

1998 (2)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

T. Yokozawa, J. Izawa, and H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145(1–6), 98–100 (1998).
[Crossref]

1994 (2)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[Crossref] [PubMed]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1991 (1)

M. Dulick, G. E. Faulkner, N. J. Cockroft, and D. C. Nguyen, “Spectroscopy and dynamics of upconversion in Tm3+:YLiF4,” J. Lumin. 48–49, 517–521 (1991).
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1970 (1)

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Aguiló, M.

Aravazhi, S.

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Bernardini, C.

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Bourdet, G. L.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Camy, P.

Caspers, H. H.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Choi, S. Y.

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Cockroft, N. J.

M. Dulick, G. E. Faulkner, N. J. Cockroft, and D. C. Nguyen, “Spectroscopy and dynamics of upconversion in Tm3+:YLiF4,” J. Lumin. 48–49, 517–521 (1991).
[Crossref]

Coluccelli, N.

Cornacchia, F.

Courjaud, A.

Di Lieto, A.

Díaz, F.

Dill Iii, C.

Doualan, J. L.

Druon, F.

Duan, X. M.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[Crossref]

Dulick, M.

M. Dulick, G. E. Faulkner, N. J. Cockroft, and D. C. Nguyen, “Spectroscopy and dynamics of upconversion in Tm3+:YLiF4,” J. Lumin. 48–49, 517–521 (1991).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Faoro, R.

Faulkner, G. E.

M. Dulick, G. E. Faulkner, N. J. Cockroft, and D. C. Nguyen, “Spectroscopy and dynamics of upconversion in Tm3+:YLiF4,” J. Lumin. 48–49, 517–521 (1991).
[Crossref]

Galzerano, G.

Gao, J.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[Crossref]

Gaponenko, M.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

García-Blanco, S. M.

Georges, P.

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Griebner, U.

Grivas, C.

Gruber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Hanna, D. C.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Hara, H.

T. Yokozawa, J. Izawa, and H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145(1–6), 98–100 (1998).
[Crossref]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Izawa, J.

T. Yokozawa, J. Izawa, and H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145(1–6), 98–100 (1998).
[Crossref]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Ju, Y.

X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
[Crossref]

Kadankov, M.

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kuleshov, N.

Kuleshov, N. V.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Laporta, P.

Lescroart, G.

Li, L.

X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
[Crossref]

Loiko, P.

Loiko, P. A.

K. V. Yumashev, A. N. Zakharova, and P. A. Loiko, “Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals,” Laser Phys. 26(6), 065002 (2016).
[Crossref]

P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals,” Appl. Opt. 52(4), 698–705 (2013).
[Crossref] [PubMed]

Mackenzie, J. I.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Mateos, X.

Matrosov, V. N.

Merazzi, S.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Miller, S. A.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Moncorgé, R.

Mottay, E.

Nguyen, D. C.

M. Dulick, G. E. Faulkner, N. J. Cockroft, and D. C. Nguyen, “Spectroscopy and dynamics of upconversion in Tm3+:YLiF4,” J. Lumin. 48–49, 517–521 (1991).
[Crossref]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Papadopoulos, D. N.

Parisi, D.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Pellegrina, A.

Peng, Y.

X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
[Crossref]

Petros, M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Petrov, V.

Pfistner, C.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Pollnau, M.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Rast, H. E.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Ricaud, S.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Rotermund, F.

Schellhorn, M.

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

Segura, M.

Serres, J. M.

Sheperd, D. P.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Singh, U. N.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

So, S.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Song, C. W.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Südmeyer, T.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Toncelli, A.

Tonelli, M.

van Dalfsen, K.

Veronesi, S.

Viana, B.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Wang, Y.

X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
[Crossref]

Wang, Y. Z.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[Crossref]

Weber, H. P.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Weber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Yao, B. Q.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[Crossref]

Yasukevich, A.

Yokozawa, T.

T. Yokozawa, J. Izawa, and H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145(1–6), 98–100 (1998).
[Crossref]

Yu, H.

Yu, J.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Yumashev, K.

Yumashev, K. V.

K. V. Yumashev, A. N. Zakharova, and P. A. Loiko, “Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals,” Laser Phys. 26(6), 065002 (2016).
[Crossref]

P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals,” Appl. Opt. 52(4), 698–705 (2013).
[Crossref] [PubMed]

Zakharova, A. N.

K. V. Yumashev, A. N. Zakharova, and P. A. Loiko, “Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals,” Laser Phys. 26(6), 065002 (2016).
[Crossref]

Zayhowski, J. J.

Zhang, X.

X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (3)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

IEEE J. Quantum Electron. (4)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

J. Appl. Phys. (2)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Chem. Phys. (1)

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

J. Lumin. (1)

M. Dulick, G. E. Faulkner, N. J. Cockroft, and D. C. Nguyen, “Spectroscopy and dynamics of upconversion in Tm3+:YLiF4,” J. Lumin. 48–49, 517–521 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

X. Zhang, Y. Wang, L. Li, Y. Ju, and Y. Peng, “The effects of energy transfer upconversion on end-pumped Q-switched Tm,Ho:YLF lasers,” J. Phys. D Appl. Phys. 42(2), 025107 (2009).
[Crossref]

Laser Phys. (2)

K. V. Yumashev, A. N. Zakharova, and P. A. Loiko, “Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals,” Laser Phys. 26(6), 065002 (2016).
[Crossref]

K. Yumashev and P. Loiko, “Thermal stresses and end-bulging in the laser disc from a tetragonal crystal: The case of LiYF4,” Laser Phys. 25(6), 065004 (2015).
[Crossref]

Laser Phys. Lett. (1)

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, and Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[Crossref]

Opt. Commun. (1)

T. Yokozawa, J. Izawa, and H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145(1–6), 98–100 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[Crossref] [PubMed]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 microm,” Opt. Lett. 34(22), 3559–3561 (2009).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 microm,” Opt. Lett. 32(14), 2040–2042 (2007).
[Crossref] [PubMed]

R. Faoro, M. Kadankov, D. Parisi, S. Veronesi, M. Tonelli, V. Petrov, U. Griebner, M. Segura, and X. Mateos, “Passively Q-switched Tm:YLF laser,” Opt. Lett. 37(9), 1517–1519 (2012).
[Crossref] [PubMed]

H. Yu, V. Petrov, U. Griebner, D. Parisi, S. Veronesi, and M. Tonelli, “Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy,” Opt. Lett. 37(13), 2544–2546 (2012).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

Opt. Mater. (1)

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2–3), 255–267 (1999).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (1)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Other (3)

B. Oreshkov, S. Veronesi, M. Tonelli, A. di Lieto, V. Petrov, U. Griebner, X. Mateos, and I. Buchvarov, “Tm3+:LiGdF4 Laser, passively Q-switched with a Cr2+:ZnSe saturable absorber,” IEEE Photonics J. 7(3), 1502206 (2015).

P. Loiko, J. M. Serres, X. Mateos, H. Yu, H. Zhang, J. Liu, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Thermal lensing and multi-watt microchip laser operation of Yb:YCOB crystals,” IEEE Photonics J. 8(3), 1501312–1–12 (2016).

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Scheme of the Tm:LiLnF4 micro-lasers: LD – laser diode, PM – pump mirror, OC – output coupler; (b) Scheme of the energy-levels of Tm3+ and Ho3+ ions showing the pump and laser transitions: CR – cross-relaxation, ET – energy-transfer.

Fig. 2
Fig. 2

Absorption cross-section, σabs, spectra for the 3H63H4 and 3H63F4 transitions of Tm3+ in 8 at.% Tm-doped YLF, GLF and LLF crystals for light polarizations E c and E || c : (a) Tm:YLF crystal; (b) comparison for the 3H63H4 transition; (c) comparison for the 3H63F4 transition.

Fig. 3
Fig. 3

Stimulated-emission (SE) cross-section, σSE, spectra for the 3F43H6 transition of Tm3+ in 8 at.% Tm-doped YLF, GLF and LLF crystals for light polarizations E c and E || c : (a) Tm:YLF crystal; (b) comparison for E || c polarization; (c) comparison for E c polarization.

Fig. 4
Fig. 4

Tm:YLF micro-laser: (a) input-output dependences, η – slope efficiency; (b) typical laser emission spectra at Pabs = 4.5 W; (c) gain cross-section, σg = βσSE – (1 – β)σabs, spectra for Tm:YLF for light polarizations E c (σ) and E || c (π), β is the inversion ratio.

Fig. 5
Fig. 5

Comparison of the (a) input-output characteristics and (b) typical laser emission spectra (at maximum Pabs) for Tm:YLF, Tm:GLF and Tm:LLF micro-lasers, η - slope efficiency.

Fig. 6
Fig. 6

(a) Input-output characteristics and (b) typical laser emission spectra (at maximum Pabs) for the “vibronic” Tm:YLF micro-laser with a “bandpass” OC and the Tm,Ho:YLF micro-laser with different OCs, η - slope efficiency; dashed curve – transmission spectrum of the “bandpass” OC; (c) σSE spectra for the 5I75I8 transition of Ho3+ in YLF for light polarizations E c (σ) and E || c (π), arrow denotes the laser wavelength.

Fig. 7
Fig. 7

Optical (refractive) power of the thermal lens vs. absorbed pump power in 8 at.% Tm:YLF (a), 8 at.% Tm:GLF (b) and 12 at.% Tm:LLF (c) crystals: pump wavelength, λp = 802 nm; pump spot radius, wp = 100 μm, laser polarization, E c (σ): symbols – experimental data, lines – linear fits for the extraction of the sensitivity factor (M).

Tables (4)

Tables Icon

Table 1 Parameters of the Studied Tm:LiLnF4 Crystals

Tables Icon

Table 2 Comparison of the Spectroscopic Characteristics of the Tm:LiLnF4 Crystals

Tables Icon

Table 3 Comparison of the Output Characteristics of the Tm:LiLnF4 Micro-Lasers

Tables Icon

Table 4 Comparison of the Thermal Lens Parameters of the Tm:LiLnF4 Crystals (a-cut, Ec)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = η h 2 π w p 2 κ Δ ,
η = η St · η q · η mode · η OC ,

Metrics