Abstract

A GexSn1-x/Ge quantum well structure is studied by the 8-band k.p method. The band structures of both direct Γ valley and indirect L valley were calculated, and the relations between temperature and the spontaneous emission rate spectrum (SERS) were investigated. The results show an abnormal temperature dependent SERS phenomenon in the so-called pseudo-direct gap semiconductor. This can be explained by taking consideration of the contribution of electrons in the indirect L valley injecting into direct Γ valley under a higher temperature. Cases of higher Sn composition accompanied with larger compressive strain were investigated using the same model. The significant compressive strain effect compensates the dragging down of energy gap by the induced Sn atoms, which makes it difficult to achieve the transition from indirect band-gap material to direct band-gap material in quantum well devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biaxial strain effects on photoluminescence of Ge/strained GeSn/Ge quantum well

Chung-Yi Lin, Hung-Yu Ye, Fang-Liang Lu, H. S. Lan, and C. W. Liu
Opt. Mater. Express 8(9) 2795-2802 (2018)

Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode

G. Sun, R. A. Soref, and H. H. Cheng
Opt. Express 18(19) 19957-19965 (2010)

Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum-well lasers at telecom wavelength

Guo-En Chang, Shu-Wei Chang, and Shun Lien Chuang
Opt. Express 17(14) 11246-11258 (2009)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, L. C. Kimerling, J. Michel, and J. Liu, “Large inherent optical gain from the direct gap transition of Ge thin films,” Appl. Phys. Lett. 102(13), 131116 (2013).
    [Crossref]
  2. A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
    [Crossref]
  3. W. J. Fan, “Tensile-strain and doping enhanced direct bandgap optical transition of n+ doped Ge/GeSi quantum wells,” J. Appl. Phys. 114(18), 183106 (2013).
    [Crossref]
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  5. K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
    [Crossref]
  6. Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
    [Crossref]
  7. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
    [Crossref]
  8. S. W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge–SixGeySn1-x-y Quantum-Well Lasers,” J. Quantum Electron. 43, 243–256 (2007).
    [Crossref]
  9. W. J. Fan, “Theory of Direct-Transition Optical Gain in a Novel n+ Doping Tensile-Strained Ge/GeSiSn-on-Si Quantum Well Laser,” Adv. Mat. Res. 746, 197–202 (2013).
  10. G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express 18(19), 19957–19965 (2010).
    [Crossref] [PubMed]
  11. S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, “Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k.p models,” Phys. Rev. B 72(11), 115341 (2005).
    [Crossref]
  12. V. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  13. C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
    [Crossref]
  14. J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).
  15. B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
    [Crossref] [PubMed]
  16. S. L. Chuang, Physics of Photonic Devices (Wiley, 2009), p. 557.
  17. K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
    [Crossref]
  18. H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
    [Crossref]
  19. H. S. Mączko, R. Kudrawiec, and M. Gladysiewicz, “Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform,” Sci. Rep. 6, 34082 (2016).
    [Crossref] [PubMed]
  20. P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic structure and optical properties of Sn and SnGe quantum dots,” J. Appl. Phys. 103(10), 103712 (2008).
    [Crossref]
  21. S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
    [Crossref]

2016 (4)

C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
[Crossref]

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

H. S. Mączko, R. Kudrawiec, and M. Gladysiewicz, “Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform,” Sci. Rep. 6, 34082 (2016).
[Crossref] [PubMed]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

2015 (1)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

2014 (1)

2013 (3)

W. J. Fan, “Tensile-strain and doping enhanced direct bandgap optical transition of n+ doped Ge/GeSi quantum wells,” J. Appl. Phys. 114(18), 183106 (2013).
[Crossref]

X. Wang, L. C. Kimerling, J. Michel, and J. Liu, “Large inherent optical gain from the direct gap transition of Ge thin films,” Appl. Phys. Lett. 102(13), 131116 (2013).
[Crossref]

W. J. Fan, “Theory of Direct-Transition Optical Gain in a Novel n+ Doping Tensile-Strained Ge/GeSiSn-on-Si Quantum Well Laser,” Adv. Mat. Res. 746, 197–202 (2013).

2012 (3)

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

2011 (1)

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

2010 (2)

G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express 18(19), 19957–19965 (2010).
[Crossref] [PubMed]

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[Crossref]

2009 (1)

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

2008 (1)

P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic structure and optical properties of Sn and SnGe quantum dots,” J. Appl. Phys. 103(10), 103712 (2008).
[Crossref]

2007 (1)

S. W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge–SixGeySn1-x-y Quantum-Well Lasers,” J. Quantum Electron. 43, 243–256 (2007).
[Crossref]

2005 (1)

S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, “Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k.p models,” Phys. Rev. B 72(11), 115341 (2005).
[Crossref]

1967 (1)

V. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Adam, T.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Al-Kabi, S.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Cecchi, S.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Chan, S.-T.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

Chang, C.

C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
[Crossref]

Chang, S. W.

S. W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge–SixGeySn1-x-y Quantum-Well Lasers,” J. Quantum Electron. 43, 243–256 (2007).
[Crossref]

Chatterjee, S.

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Chen, C.-Y.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

Cheng, H. H.

C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express 18(19), 19957–19965 (2010).
[Crossref] [PubMed]

Cheng, T.-H.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

Chernikov, A.

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chrastina, D.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Chuang, S. L.

S. W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge–SixGeySn1-x-y Quantum-Well Lasers,” J. Quantum Electron. 43, 243–256 (2007).
[Crossref]

Collier, B.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Conley, B. R.

Dang, Y. X.

S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, “Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k.p models,” Phys. Rev. B 72(11), 115341 (2005).
[Crossref]

Dou, W.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Du, W.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fan, W. J.

W. J. Fan, “Tensile-strain and doping enhanced direct bandgap optical transition of n+ doped Ge/GeSi quantum wells,” J. Appl. Phys. 114(18), 183106 (2013).
[Crossref]

W. J. Fan, “Theory of Direct-Transition Optical Gain in a Novel n+ Doping Tensile-Strained Ge/GeSiSn-on-Si Quantum Well Laser,” Adv. Mat. Res. 746, 197–202 (2013).

K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, “Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k.p models,” Phys. Rev. B 72(11), 115341 (2005).
[Crossref]

Fan, W.-J.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[Crossref]

Frigerio, J.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Gallacher, K.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Gatti, E.

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Ghetmiri, S. A.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Giorgioni, A.

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Gladysiewicz, M.

H. S. Mączko, R. Kudrawiec, and M. Gladysiewicz, “Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform,” Sci. Rep. 6, 34082 (2016).
[Crossref] [PubMed]

Grilli, E.

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gupta, J.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Guzzi, M.

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Han, G.

K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Harrison, P.

P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic structure and optical properties of Sn and SnGe quantum dots,” J. Appl. Phys. 103(10), 103712 (2008).
[Crossref]

Hart, J.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hazbun, R.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Huang, S. H.

C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
[Crossref]

Huang, Y. C.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic structure and optical properties of Sn and SnGe quantum dots,” J. Appl. Phys. 103(10), 103712 (2008).
[Crossref]

Isella, G.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

Jan, S.-R.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

Kim, Y.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Kimerling, L. C.

X. Wang, L. C. Kimerling, J. Michel, and J. Liu, “Large inherent optical gain from the direct gap transition of Ge thin films,” Appl. Phys. Lett. 102(13), 131116 (2013).
[Crossref]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

Kolodzey, J.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Kudrawiec, R.

H. S. Mączko, R. Kudrawiec, and M. Gladysiewicz, “Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform,” Sci. Rep. 6, 34082 (2016).
[Crossref] [PubMed]

Lan, H.-S.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

Li, B. H.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Li, H.

C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
[Crossref]

Lin, L. C.

C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
[Crossref]

Liu, C. W.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

Liu, J.

X. Wang, L. C. Kimerling, J. Michel, and J. Liu, “Large inherent optical gain from the direct gap transition of Ge thin films,” Appl. Phys. Lett. 102(13), 131116 (2013).
[Crossref]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

Liu, J. F.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Low, K. L.

K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Maczko, H. S.

H. S. Mączko, R. Kudrawiec, and M. Gladysiewicz, “Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform,” Sci. Rep. 6, 34082 (2016).
[Crossref] [PubMed]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Margetis, J.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Michel, J.

X. Wang, L. C. Kimerling, J. Michel, and J. Liu, “Large inherent optical gain from the direct gap transition of Ge thin films,” Appl. Phys. Lett. 102(13), 131116 (2013).
[Crossref]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

Moontragoon, P.

P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic structure and optical properties of Sn and SnGe quantum dots,” J. Appl. Phys. 103(10), 103712 (2008).
[Crossref]

Mortazavi, M.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Mosleh, A.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Naseem, H. A.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Ng, S. T.

S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, “Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k.p models,” Phys. Rev. B 72(11), 115341 (2005).
[Crossref]

Paul, D. J.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Pham, T.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Quinde, R.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Reznicek, A.

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Soref, R. A.

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Sun, G.

Sun, X.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

Tolle, H.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Tolle, J.

Varshni, V. P.

V. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Velha, P.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Vukmirovic, N.

P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic structure and optical properties of Sn and SnGe quantum dots,” J. Appl. Phys. 103(10), 103712 (2008).
[Crossref]

Wang, J.-W.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[Crossref]

Wang, X.

X. Wang, L. C. Kimerling, J. Michel, and J. Liu, “Large inherent optical gain from the direct gap transition of Ge thin films,” Appl. Phys. Lett. 102(13), 131116 (2013).
[Crossref]

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Xu, Q.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[Crossref]

Yang, Y.

K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Yeo, Y.-C.

K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Yoon, S. F.

S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, “Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k.p models,” Phys. Rev. B 72(11), 115341 (2005).
[Crossref]

Yu, S. Q.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Zhou, Y.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Zhu, Y.-H.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[Crossref]

Adv. Mat. Res. (1)

W. J. Fan, “Theory of Direct-Transition Optical Gain in a Novel n+ Doping Tensile-Strained Ge/GeSiSn-on-Si Quantum Well Laser,” Adv. Mat. Res. 746, 197–202 (2013).

Appl. Phys. Lett. (5)

X. Wang, L. C. Kimerling, J. Michel, and J. Liu, “Large inherent optical gain from the direct gap transition of Ge thin films,” Appl. Phys. Lett. 102(13), 131116 (2013).
[Crossref]

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett. 98(10), 101106 (2011).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. F. Liu, G. Sun, R. A. Soref, H. Tolle, B. H. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “An optically pumped 2.5μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

J. Appl. Phys. (6)

P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic structure and optical properties of Sn and SnGe quantum dots,” J. Appl. Phys. 103(10), 103712 (2008).
[Crossref]

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.02/Ge1−x−y′SixSny′ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[Crossref]

A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, “Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells,” J. Appl. Phys. 111(1), 013501 (2012).
[Crossref]

W. J. Fan, “Tensile-strain and doping enhanced direct bandgap optical transition of n+ doped Ge/GeSi quantum wells,” J. Appl. Phys. 114(18), 183106 (2013).
[Crossref]

J. Hart, T. Adam, Y. Kim, Y. C. Huang, A. Reznicek, R. Hazbun, J. Gupta, and J. Kolodzey, “Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentration form 4% to 11%,” J. Appl. Phys. 19, 101063 (2016).

K. L. Low, Y. Yang, G. Han, W. J. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

J. Quantum Electron. (1)

S. W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge–SixGeySn1-x-y Quantum-Well Lasers,” J. Quantum Electron. 43, 243–256 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

C. Chang, H. Li, S. H. Huang, L. C. Lin, and H. H. Cheng, “Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate,” Jpn. J. Appl. Phys. 55(4S), 04EH03 (2016).
[Crossref]

Nat. Photonics (1)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bangap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, “Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k.p models,” Phys. Rev. B 72(11), 115341 (2005).
[Crossref]

Physica (1)

V. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Sci. Rep. (1)

H. S. Mączko, R. Kudrawiec, and M. Gladysiewicz, “Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform,” Sci. Rep. 6, 34082 (2016).
[Crossref] [PubMed]

Other (1)

S. L. Chuang, Physics of Photonic Devices (Wiley, 2009), p. 557.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a). Energy band structure of Ge0.95Sn0.05/Ge at room temperature. 1(b). The shift of energy of Ge0.95Sn0.05/Ge quantum well as a result of rising temperature. 1(c). Electron and hole energy dispersion curves of Ge0.95Sn0.05/Ge quantum well at 200k. 1(d). Strain effect on GeSn0.126/Ge Quantum well at room temperature.
Fig. 2
Fig. 2 (a). Temperature dependence of TE spontaneous emission rate spectra with no doping and 2(b). doping concentration dependence of TE spontaneous emission rate spectra at 200 K where only direct Γ valley is considered in GeSn0.05 quantum well.
Fig. 3
Fig. 3 (a). Temperature dependence of TE spontaneous emission rate spectra with no doping and (3b). doping concentration dependence of TE spontaneous emission rate spectra at 200 K where the contribution of indirect L valley is considered in GeSn0.05 quantum well.
Fig. 4
Fig. 4 (a). The lowest electron energy levels at L and Γ points of the GeSn QW with different Sn composition at room temperature. Figure (4b). The strain effect of different Sn composition on the CBM at room temperature.
Fig. 5
Fig. 5 The lowest level E1 of Γ point in Ge0.8Sn0.2/Ge QW with different well width at room temperature.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H L =  2 2 z ( 1 3 m l,L + 2 3 m t,L ) z i 2 2 k 1 6  ×[ z ( 1 m l,L 1 m t,L )+( 1 m l,L 1 m t,L ) z ] + ( 2 3 m l,L + 1 3 m t,L ) 2 k 1 2 2 + 2 k 2 2 2 m t,L + V [ 111 ] ( z )+ V ε [ 111 ] ( z )
  V ε [ 111 ] ( z )= a L ( ε xx + ε yy + ε zz ), 
k 1 = 1 2 ( k x + k y 2π a ),
  k 2 = 1 2 ( k x + k y ).
a G e x S n 1x =5.6573x+6.4892( 1x ).
R sp ( E )= n e 2 E π m 0 2 ε 0 2 c 3 n c n v Q n c n v 4 π 2 l f c f v × 1 π τ ( E eh E ) 2 + ( τ ) 2 d k x d k y ,
E g = E 0 α T 2 /( T+β ),
τ 2 =HWHM= Γ 0 + Γ ph exp( ω LO k B T )1 ,
E g,Γ GeSn = E g,Γ Ge x+ E g,Γ Sn ( 1x ) b Γ GeSn x( 1x ),
E g,L GeSn =  E g,L Ge x+ E g,L Sn ( 1x ) b L GeSn x( 1x ),

Metrics