Abstract

Titanium dioxide is an emerging optical material, with a relatively high refractive index (n ∼ 2), which allows for high confinement of the electromagnetic field. Extensive research has been conducted on the negatively charged nitrogen vacancy centre in diamond due to its robust electronic and optical properties. In particular, its stable room-temperature photoluminescence properties have been considered for quantum optical applications. Nanobeam cavities are a geometry that offer exceptionally large-Q values given their minimal footprint, a must for high density and compact optical architecture. This paper presents an ultrahigh-Q nanobeam cavity within titanium dioxide in a low-refractive index environment operating at the negatively charged nitrogen vacancy centre of diamond. This research opens the possibility of hybrid optical devices utilising titanium dioxide and diamond.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers

Paul E. Barclay, Kai-Mei Fu, Charles Santori, and Raymond G. Beausoleil
Opt. Express 17(12) 9588-9601 (2009)

Quantum nanophotonics in diamond [Invited]

Tim Schröder, Sara L. Mouradian, Jiabao Zheng, Matthew E. Trusheim, Michael Walsh, Edward H. Chen, Luozhou Li, Igal Bayn, and Dirk Englund
J. Opt. Soc. Am. B 33(4) B65-B83 (2016)

Waveguide-integrated single-crystalline GaP resonators on diamond

Nicole Thomas, Russell J. Barbour, Yuncheng Song, Minjoo Larry Lee, and Kai-Mei C. Fu
Opt. Express 22(11) 13555-13564 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Subramania, Y.-J. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15, 13049–13057 (2007).
    [Crossref] [PubMed]
  2. G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
    [Crossref] [PubMed]
  3. M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
    [Crossref]
  4. M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
    [Crossref]
  5. Z.-F. Bi, L. Wang, X.-H. Liu, S.-M. Zhang, M.-M. Dong, Q.-Z. Zhao, X.-L. Wu, and K.-M. Wang, “Optical waveguides in TiO2 formed by He ion implantation,” Opt. Express 20, 6712–6719 (2012).
    [Crossref] [PubMed]
  6. J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20, 23821–31 (2012).
    [Crossref] [PubMed]
  7. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
    [Crossref] [PubMed]
  8. F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
    [Crossref]
  9. M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
    [Crossref]
  10. J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
    [Crossref]
  11. O. Reshef, K. Shtyrkova, M. G. Moebius, S. Griesse-Nascimento, S. Spector, C. C. Evans, E. Ippen, and E. Mazur, “Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient,” J. Opt. Soc. Am. B 32, 2288 (2015).
    [Crossref]
  12. A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9, 241–244 (2015).
    [Crossref]
  13. C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
    [Crossref] [PubMed]
  14. O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Chem. 32, 33–177 (2004).
    [Crossref]
  15. Z. Wang, U. Helmersson, and P.-O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films 405, 50–54 (2002).
    [Crossref]
  16. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
    [Crossref] [PubMed]
  17. A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11, 22–31 (2008).
    [Crossref]
  18. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
    [Crossref]
  19. S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
    [Crossref] [PubMed]
  20. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
    [Crossref]
  21. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [Crossref]
  22. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
    [Crossref]
  23. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
    [Crossref] [PubMed]
  24. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
    [Crossref] [PubMed]
  25. T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
    [Crossref]
  26. Y. Zhang and M. Lončar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008).
    [Crossref] [PubMed]
  27. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 12–15 (2009).
    [Crossref]
  28. T.-W. Lu and P.-T. Lee, “Photonic crystal nanofishbone nanocavity,” Opt. Lett. 38, 3129–3132 (2013).
    [Crossref] [PubMed]
  29. C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
    [Crossref]
  30. D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
    [Crossref]
  31. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [Crossref]
  32. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
    [Crossref]
  33. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [Crossref]
  34. Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [Crossref] [PubMed]
  35. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  36. W. Lukosz and R. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).
    [Crossref]
  37. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
    [Crossref]
  38. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Lončar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191 (2011).
    [Crossref] [PubMed]
  39. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nano cavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136 (2008).
    [Crossref]
  40. T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
    [Crossref]

2015 (4)

O. Reshef, K. Shtyrkova, M. G. Moebius, S. Griesse-Nascimento, S. Spector, C. C. Evans, E. Ippen, and E. Mazur, “Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient,” J. Opt. Soc. Am. B 32, 2288 (2015).
[Crossref]

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9, 241–244 (2015).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
[Crossref] [PubMed]

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

2014 (3)

C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
[Crossref]

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

2013 (3)

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

T.-W. Lu and P.-T. Lee, “Photonic crystal nanofishbone nanocavity,” Opt. Lett. 38, 3129–3132 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

2012 (6)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

Z.-F. Bi, L. Wang, X.-H. Liu, S.-M. Zhang, M.-M. Dong, Q.-Z. Zhao, X.-L. Wu, and K.-M. Wang, “Optical waveguides in TiO2 formed by He ion implantation,” Opt. Express 20, 6712–6719 (2012).
[Crossref] [PubMed]

J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20, 23821–31 (2012).
[Crossref] [PubMed]

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
[Crossref] [PubMed]

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

2011 (4)

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Lončar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191 (2011).
[Crossref] [PubMed]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

2010 (3)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[Crossref] [PubMed]

2009 (3)

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 12–15 (2009).
[Crossref]

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

2008 (5)

2007 (3)

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

G. Subramania, Y.-J. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15, 13049–13057 (2007).
[Crossref] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

2004 (1)

O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Chem. 32, 33–177 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2002 (1)

Z. Wang, U. Helmersson, and P.-O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films 405, 50–54 (2002).
[Crossref]

1989 (1)

1988 (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref]

1977 (1)

W. Lukosz and R. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).
[Crossref]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Albrand, G.

Allen, T. H.

Aoki, I.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Awschalom, D. D.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Bennett, J. M.

Benson, O.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

Bi, Z.-F.

Biswas, P.

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

Borgogno, J. P.

Bouwmeester, D.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Bradley, J. D. B.

Brener, I.

Burek, M. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Burgess, I. B.

Butler, J. E.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Carniglia, C. K.

Carp, O.

O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Chem. 32, 33–177 (2004).
[Crossref]

Chadha, T.

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

Chang, H. C.

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref]

Choy, J. T.

Chu, Y.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Clem, P. G.

De La Rue, R. M.

De Leon, N. P.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Deng, C.-S.

C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
[Crossref]

Deotare, P. B.

Dong, M.-M.

Döscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Erbe, A.

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9, 241–244 (2015).
[Crossref]

Evans, C. C.

Evans, R.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Fairchild, B. A.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11, 22–31 (2008).
[Crossref]

Fang, C. Y.

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Feygelson, T.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Fischer, A. J.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[Crossref] [PubMed]

Floyd, D. L.

Forchel, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 12–15 (2009).
[Crossref]

Fu, K.-M. C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Fujiwara, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Furuhashi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Gandhi, V.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Gao, Y.-S.

C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
[Crossref]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Greentree, A. D.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11, 22–31 (2008).
[Crossref]

Griesse-Nascimento, S.

Guenther, K. H.

Hagemeier, J.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Han, C. C.

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Hanson, R.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Häyrinen, M.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Heeres, E.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Helmersson, U.

Z. Wang, U. Helmersson, and P.-O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films 405, 50–54 (2002).
[Crossref]

Höfling, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Honkanen, S.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Hossain, F. M.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11, 22–31 (2008).
[Crossref]

Hsu, H. L.

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

Hu, E. L.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Huang, S. H.

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Huisman, C. L.

O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Chem. 32, 33–177 (2004).
[Crossref]

Ippen, E.

Ji, Y.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

Johnson, N. P.

Käll, P.-O.

Z. Wang, U. Helmersson, and P.-O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films 405, 50–54 (2002).
[Crossref]

Kamp, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Karvonen, L.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Kawai, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Kewes, G.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 12–15 (2009).
[Crossref]

Kim, H.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Koleske, D. D.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[Crossref] [PubMed]

Kuittinen, M.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Kunz, R.

W. Lukosz and R. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).
[Crossref]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Lazarides, B.

Lee, P.-T.

Lee, Y.-J.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[Crossref] [PubMed]

G. Subramania, Y.-J. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15, 13049–13057 (2007).
[Crossref] [PubMed]

Li, M.-J.

C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
[Crossref]

Liu, C.

Liu, X.-H.

Löchel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Loncar, M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
[Crossref] [PubMed]

J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20, 23821–31 (2012).
[Crossref] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Lončar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191 (2011).
[Crossref] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 12–15 (2009).
[Crossref]

Y. Zhang and M. Lončar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008).
[Crossref] [PubMed]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nano cavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136 (2008).
[Crossref]

Lu, T.-W.

Luk, T. S.

Lukin, M. D.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Lukosz, W.

W. Lukosz and R. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).
[Crossref]

Markham, M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Matsubara, K.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Mau, Y. W.

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

Mazur, E.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 12–15 (2009).
[Crossref]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nano cavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136 (2008).
[Crossref]

Md Zain, A. R.

Moebius, M. G.

Moirangthem, R. S.

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9, 241–244 (2015).
[Crossref]

Monifi, F.

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Nüsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Ohshiro, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Otomo, A.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Ozdemir, S. K.

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

Park, H.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Park, J.

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

Parsy, F.

Paunoiu, A.

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9, 241–244 (2015).
[Crossref]

Pelletier, E.

Petroff, P.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Pfaff, W.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Phillips, K. C.

Prawer, S.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11, 22–31 (2008).
[Crossref]

Qiu, F.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Quan, Q.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Lončar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191 (2011).
[Crossref] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Reitzenstein, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Reller, A.

O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Chem. 32, 33–177 (2004).
[Crossref]

Reshef, O.

Roussey, M.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Saxer, A.

Säynätjoki, A.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Schell, A. W.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schietinger, S.

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

Schmell, R. A.

Schneider, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schröder, T.

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

Shields, B. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Shtyrkova, K.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Sorel, M.

Spector, S.

Spring, A. M.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Stenberg, P.

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Subramania, G.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[Crossref] [PubMed]

G. Subramania, Y.-J. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15, 13049–13057 (2007).
[Crossref] [PubMed]

Suntivich, J.

Takeuchi, S.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Tang, S. K. Y.

Taniguchi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Thon, S.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Tian, H.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

Tjerk, O.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Tsutsui, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Tuttle-Hart, T.

Twitchen, D. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

van der Sar, T.

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Wang, C. F.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Wang, K.-M.

Wang, L.

Wang, Z.

Z. Wang, U. Helmersson, and P.-O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films 405, 50–54 (2002).
[Crossref]

Wee, T. L.

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Wu, X.-L.

Wu, X.-Z.

C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
[Crossref]

Yang, D.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

Yang, J.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Yang, L.

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

Yokoyama, S.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Yu, F.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Zhang, P.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

Zhang, S.-M.

Zhang, Y.

Zhao, Q.-Z.

Zhong, J.-X.

C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
[Crossref]

Zibrov, A. S.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Park, S. K. Ozdemir, F. Monifi, T. Chadha, S. H. Huang, P. Biswas, and L. Yang, “Titanium Dioxide Whispering Gallery Microcavities,” Adv. Opt. Mater. 2, 711–717 (2014).
[Crossref]

AIP Adv. (1)

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 12–15 (2009).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AIAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Diam. Relat. Mater. (1)

T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diam. Relat. Mater. 18, 567–573 (2009).
[Crossref]

Europhys. Lett. (1)

C.-S. Deng, Y.-S. Gao, X.-Z. Wu, M.-J. Li, and J.-X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108, 54006 (2014).
[Crossref]

IEEE Photonics J. (1)

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

J. Light. Technol. (1)

M. Häyrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Säynätjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Light. Technol. 32, 208–212 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

O. Reshef, K. Shtyrkova, M. G. Moebius, S. Griesse-Nascimento, S. Spector, C. C. Evans, E. Ippen, and E. Mazur, “Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient,” J. Opt. Soc. Am. B 32, 2288 (2015).
[Crossref]

T. van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 32(4), 698–703 (2012).
[Crossref]

Mater. Today (1)

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11, 22–31 (2008).
[Crossref]

Nano Lett. (2)

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

W. Lukosz and R. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).
[Crossref]

Opt. Express (9)

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
[Crossref]

G. Subramania, Y.-J. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15, 13049–13057 (2007).
[Crossref] [PubMed]

Y. Zhang and M. Lončar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008).
[Crossref] [PubMed]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
[Crossref] [PubMed]

Z.-F. Bi, L. Wang, X.-H. Liu, S.-M. Zhang, M.-M. Dong, Q.-Z. Zhao, X.-L. Wu, and K.-M. Wang, “Optical waveguides in TiO2 formed by He ion implantation,” Opt. Express 20, 6712–6719 (2012).
[Crossref] [PubMed]

J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20, 23821–31 (2012).
[Crossref] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Lončar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191 (2011).
[Crossref] [PubMed]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nano cavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136 (2008).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref]

Phys. Rev. Lett. (1)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Phys. Status Solidi RRL (1)

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9, 241–244 (2015).
[Crossref]

Prog. Solid State Chem. (1)

O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Chem. 32, 33–177 (2004).
[Crossref]

Thin Solid Films (1)

Z. Wang, U. Helmersson, and P.-O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films 405, 50–54 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The geometry of the ultrahigh-Q TiO2 nanobeam. (a) Cross-sectional trapezium profile which results from Bradley et al.’s [6] etching recipe. Here, w and s represent the top and bottom lengths of the TiO2 trapezium, b is the width of the airhole which changes as you move along the nanobeam in the ±z-direction, tTiO2 and tSiO2 are the thicknesses of TiO2 and SiO2 layers. (b) Top-view schematic of the nanobeam with additional mirror (A), Gaussian mirror (G) and the centre (C) shown. Note: the airholes have a tapered profile from the centre of the cavity.

Fig. 2
Fig. 2

Q values with their respective resonance wavelengths for the TiO2 nanobeam as a function of the number of airholes that constitute both Gaussian mirrors (G). The results shown in this figure were for vertical sidewalls with a width of w = 0.44 μm and a periodicity for the airholes of 0.17 μm.

Fig. 3
Fig. 3

The power distribution of the TiO2 nanobeam. (a) Cross-sectional and (b) top-view profiles. The dashed white lines represent the sidewalls of the nanobeam. Note: by default, Lumerical measures the Poynting vector in their power monitors.

Fig. 4
Fig. 4

A scanning electron micrograph of the TiO2 substrate with embedded NDs.

Tables (1)

Tables Icon

Table 1 The enhancement of parallel and orthogonal dipole polarisations for 637 nm emission in various refractive index distributions. The polarisations are measured with respect to the TiO2–air interface (scenario 3).

Metrics