Abstract

A laser-induced damage study is performed on blank, uncoated Rb:KTiOPO4 (RKTP) samples at 1.03 µm with two different pulse durations of ~0.3 and ~1.0 ps and a repetition rate of 100 kHz. The effect of the sample temperature is also considered.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser induced damage studies of LiNbO3 using 1030-nm, ultrashort pulses at 10-1000 kHz

Florian Bach, Mark Mero, Ming-Hsien Chou, and Valentin Petrov
Opt. Mater. Express 7(1) 240-252 (2017)

Nanosecond laser induced damage thresholds in KTiOPO4 and Rb:KTiOPO4 at 1 µm and 2 µm

R.S. Coetzee, N. Thilmann, A. Zukauskas, C. Canalias, and V. Pasiskevicius
Opt. Mater. Express 5(9) 2090-2095 (2015)

Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz

Fabian Rotermund, Chang Jun Yoon, Valentin Petrov, Frank Noack, Sunao Kurimura, Nan-Ei Yu, and Kenji Kitamura
Opt. Express 12(26) 6421-6427 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Hagerman and K. R. Poeppelmeier, “Review of the structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices,” Chem. Mater. 7(4), 602–621 (1995).
    [Crossref]
  2. V. Ya. Shur, E. V. Pelegova, A. R. Akhmatkhanov, and I. S. Baturin, “Periodically poled crystals of KTP family: a review,” Ferroelectrics 496(1), 49–69 (2016).
    [Crossref]
  3. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
    [Crossref]
  4. V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
    [Crossref]
  5. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201–206 (2011).
    [Crossref]
  6. F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
    [Crossref]
  7. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
    [Crossref] [PubMed]
  8. R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
    [Crossref]
  9. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
    [Crossref]
  10. R. S. Coetzee, N. Thilmann, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Nanosecond laser induced damage thresholds in KTiOPO4 and Rb:KTiOPO4 at 1 µm and 2 µm,” Opt. Mater. Express 5(9), 2090–2095 (2015).
    [Crossref]
  11. M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
    [Crossref] [PubMed]
  12. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
    [Crossref]
  13. L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
    [Crossref] [PubMed]
  14. K. Starke, D. Ristau, and H. Welling, “Standard measurement procedures for the characterization of fs-laser optical components,” Proc. SPIE 4932, 482–491 (2003).
    [Crossref]
  15. H. Jang, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Highly efficient backward stimulated polariton scattering in periodically poled KTiOPO4,” CLEO 2015, paper STh4H.1.
  16. F. Bach, M. Mero, M.-H. Chou, and V. Petrov, “Laser induced damage studies of LiNbO3 using 1030-nm, ultrashort pulses at 10-100 kHz,” Opt. Mater. Express 7(1), 240–252 (2017).
    [Crossref]
  17. M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
    [Crossref]
  18. R. Desalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
    [Crossref] [PubMed]
  19. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
    [Crossref]
  20. W. T. Lotshaw, J. R. Unternahre, M. J. Kukla, C. I. Miyake, and E. D. Braun, “Performance of a degenerate KTiOPO4 optical parametric oscillator, synchronously pumped by a mode-locked and Q-switched Nd:YAG continuous-wave oscillator-slab amplifier combination,” J. Opt. Soc. Am. B 10(11), 2191–2194 (1993).
    [Crossref]

2017 (1)

2016 (1)

V. Ya. Shur, E. V. Pelegova, A. R. Akhmatkhanov, and I. S. Baturin, “Periodically poled crystals of KTP family: a review,” Ferroelectrics 496(1), 49–69 (2016).
[Crossref]

2015 (2)

2014 (2)

2012 (1)

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

2011 (1)

2009 (1)

2006 (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

2003 (2)

L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

K. Starke, D. Ristau, and H. Welling, “Standard measurement procedures for the characterization of fs-laser optical components,” Proc. SPIE 4932, 482–491 (2003).
[Crossref]

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

1997 (1)

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

1995 (1)

M. E. Hagerman and K. R. Poeppelmeier, “Review of the structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices,” Chem. Mater. 7(4), 602–621 (1995).
[Crossref]

1993 (2)

1992 (1)

1972 (1)

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Akhmatkhanov, A. R.

V. Ya. Shur, E. V. Pelegova, A. R. Akhmatkhanov, and I. S. Baturin, “Periodically poled crystals of KTP family: a review,” Ferroelectrics 496(1), 49–69 (2016).
[Crossref]

Akhouayri, H.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[Crossref] [PubMed]

Albrecht, H.

Alismail, A.

Alsaif, B.

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Arisholm, G.

Azzeer, A. M.

Bach, F.

Barros, H. G.

Baturin, I. S.

V. Ya. Shur, E. V. Pelegova, A. R. Akhmatkhanov, and I. S. Baturin, “Periodically poled crystals of KTP family: a review,” Ferroelectrics 496(1), 49–69 (2016).
[Crossref]

Boling, N. L.

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Bolt, R. J.

R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
[Crossref]

Braun, E. D.

Brons, J.

Canalias, C.

Chou, M.-H.

Ciappina, M.

Coetzee, R. S.

Commandré, M.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[Crossref] [PubMed]

Crisp, M. D.

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Desalvo, R.

Dubé, G.

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Duchateau, G.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

Fattahi, H.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Fujita, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Gallais, L.

Geng, X. T.

Gorjan, M.

Haefner, M.

Hagan, D. J.

Hagerman, M. E.

M. E. Hagerman and K. R. Poeppelmeier, “Review of the structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices,” Chem. Mater. 7(4), 602–621 (1995).
[Crossref]

Hildenbrand, A.

Kamimura, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Karlsson, H.

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

Karpowicz, N.

Kim, D.-E.

Krausz, F.

Kukla, M. J.

Laurell, F.

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201–206 (2011).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

Lotshaw, W. T.

Major, Z.

Mero, M.

Metzger, T.

Miyake, C. I.

Nakatsuka, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Natoli, J.-Y.

Noack, F.

Nubbemeyer, T.

Pasiskevicius, V.

Pelegova, E. V.

V. Ya. Shur, E. V. Pelegova, A. R. Akhmatkhanov, and I. S. Baturin, “Periodically poled crystals of KTP family: a review,” Ferroelectrics 496(1), 49–69 (2016).
[Crossref]

Petrov, V.

Poeppelmeier, K. R.

M. E. Hagerman and K. R. Poeppelmeier, “Review of the structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices,” Chem. Mater. 7(4), 602–621 (1995).
[Crossref]

Prinz, S.

Pronin, O.

Ristau, D.

K. Starke, D. Ristau, and H. Welling, “Standard measurement procedures for the characterization of fs-laser optical components,” Proc. SPIE 4932, 482–491 (2003).
[Crossref]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Sasaki, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Schultze, M.

Schwarz, A.

Sheik-Bahae, M.

Shur, V. Ya.

V. Ya. Shur, E. V. Pelegova, A. R. Akhmatkhanov, and I. S. Baturin, “Periodically poled crystals of KTP family: a review,” Ferroelectrics 496(1), 49–69 (2016).
[Crossref]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Starke, K.

K. Starke, D. Ristau, and H. Welling, “Standard measurement procedures for the characterization of fs-laser optical components,” Proc. SPIE 4932, 482–491 (2003).
[Crossref]

Stegeman, G.

Strömqvist, G.

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

Sutter, D.

Teisset, C. Y.

Théodore, F.

Thilmann, N.

Ueffing, M.

Unternahre, J. R.

Vámos, L.

Van der Mooren, M.

R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
[Crossref]

Van Stryland, E. W.

Vanherzeele, H.

Vrakking, M. J. J.

Wagner, F. R.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[Crossref] [PubMed]

Welling, H.

K. Starke, D. Ristau, and H. Welling, “Standard measurement procedures for the characterization of fs-laser optical components,” Proc. SPIE 4932, 482–491 (2003).
[Crossref]

Yakovlev, V. S.

Yoshida, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Yoshida, K.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Yoshimura, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Zukauskas, A.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Chem. Mater. (1)

M. E. Hagerman and K. R. Poeppelmeier, “Review of the structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices,” Chem. Mater. 7(4), 602–621 (1995).
[Crossref]

Ferroelectrics (1)

V. Ya. Shur, E. V. Pelegova, A. R. Akhmatkhanov, and I. S. Baturin, “Periodically poled crystals of KTP family: a review,” Ferroelectrics 496(1), 49–69 (2016).
[Crossref]

J. Appl. Phys. (1)

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Opt. Commun. (1)

R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

Opt. Mater. Express (3)

Optica (1)

Proc. SPIE (1)

K. Starke, D. Ristau, and H. Welling, “Standard measurement procedures for the characterization of fs-laser optical components,” Proc. SPIE 4932, 482–491 (2003).
[Crossref]

Other (1)

H. Jang, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Highly efficient backward stimulated polariton scattering in periodically poled KTiOPO4,” CLEO 2015, paper STh4H.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used for the LIDT studies in RKTP, T: telescope, TFP: thin film polarizer, λ/2: half-wave plate, BD: beam dump, ISO: Faraday isolator, SPF: short-pass filter, IF: laser line interference filter, PD: photodiode, and PM: power meter.

Fig. 2
Fig. 2

An exemplary LIDT measurement with a pulse duration of 930 fs. PD1 provides a reference signal converted here to actual pulse energy incident on the sample, PD2 detects the scattered HeNe laser light, and PD3 detects the scattered light above 1 µm.

Fig. 3
Fig. 3

Typical crater and surface damage observed for 930 fs (a,b) and 330 fs (c,d) pulses at 100 kHz at the backside of the sample by a reflected light microscope with × 100 magnification.

Fig. 4
Fig. 4

Comparison of the measured damage threshold fluence (a) and intensity (b) for RKTP at 100 kHz repetition rate and pulse duration of 330 and 930 fs.

Fig. 5
Fig. 5

Scattered light above 1 μm (i.e. PD3 signal) as a function of incident pulse energy at two different crystal temperatures for an uncoated RKTP sample placed behind the focus. The laser repetition rate and pulse duration were 100 kHz and 1.3 ps, respectively.

Tables (3)

Tables Icon

Table 1 LIDT peak on-axis fluence and intensity values for uncoated RKTP at a repetition rate of 100 kHz and pulse duration of 330 and 930 fs with laser polarization along the z-axis of the crystal.

Tables Icon

Table 2 LIDT peak on-axis fluence and intensity values for uncoated RKTP measured for different sample temperatures at a repetition rate of 100 kHz and pulse duration of 1.3 ps.

Tables Icon

Table 3 Comparison of LIDT peak on-axis incident fluence and intensity values measured for uncoated, 5% MgO doped LN [16] and RKTP samples at 100 kHz and pulse duration of ~300 fs and ~1 ps.

Metrics