Abstract

High quality AlxGa1-xAs distributed Bragg reflectors (DBRs) were successfully monolithically grown on on-axis Si (100) substrates via a Ge layer formed by aspect ratio trapping (ART) technique. The GaAs/ART-Ge/Si-based DBRs have reflectivity spectra comparable to those grown on conventional bulk off-cut GaAs substrates and have smooth morphology and reasonable periodicity and uniformity. Antiphase domain formation is significantly reduced in GaAs on ART-Ge/Si substrates, and etch pit density of the GaAs base layer on the ART-Ge substrates ranges from 105 to 6 × 106 cm−2. These results paved the way for future VCSEL growth and fabrication on these ART-Ge substrates and also confirm that virtual Ge substrates via ART technique are effective Si platforms for optoelectronic integrated circuits.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic integration of InGaAs n-FETs and lasers on Ge substrate

Annie Kumar, Shuh-Ying Lee, Sachin Yadav, Kian Hua Tan, Wan Khai Loke, Satrio Wicaksono, Daosheng Li, Saeid Masudy Panah, Gengchiau Liang, Soon-Fatt Yoon, Xiao Gong, Dimitri Antoniadis, and Yee-Chia Yeo
Opt. Express 25(5) 5146-5155 (2017)

Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates

Yating Wan, Zeyu Zhang, Ruilin Chao, Justin Norman, Daehwan Jung, Chen Shang, Qiang Li, MJ Kennedy, Di Liang, Chong Zhang, Jin-Wei Shi, Arthur C. Gossard, Kei May Lau, and John E. Bowers
Opt. Express 25(22) 27715-27723 (2017)

Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer

Yuting Shi, Zhechao Wang, Joris Van Campenhout, Marianna Pantouvaki, Weiming Guo, Bernardette Kunert, and Dries Van Thourhout
Optica 4(12) 1468-1473 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
    [Crossref]
  2. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  3. X. Sun, J. Liu, L. Kimerling, and J. Michel, “Toward a Germanium Laser for Integrated Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
    [Crossref]
  4. K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
    [Crossref]
  5. H. J. Yeh and J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64(12), 1466–1468 (1994).
    [Crossref]
  6. Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
    [Crossref]
  7. M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
    [Crossref]
  8. G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
    [Crossref] [PubMed]
  9. D. G. Deppe, N. Chand, J. P. V. D. Ziel, and G. J. Zydzik, “AlxGa1-xAs-GaAs vertical-cavity surface-emitting laser grown on Si substrate,” Appl. Phys. Lett. 56(8), 740–742 (1990).
    [Crossref]
  10. T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci. 117–118(6), 771–775 (1997).
    [Crossref]
  11. V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
    [Crossref]
  12. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
    [Crossref]
  13. J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
    [Crossref]
  14. J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
    [Crossref]
  15. J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
    [Crossref]
  16. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
    [Crossref]
  17. J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
    [Crossref]
  18. J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
    [Crossref]
  19. P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
    [Crossref]
  20. M. S. Abrahams and C. J. Buiocchi, “Etching of Dislocations on the Low-Index Faces of GaAs,” J. Appl. Phys. 36(9), 2855–2863 (1965).
    [Crossref]

2016 (1)

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

2015 (2)

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

2010 (1)

X. Sun, J. Liu, L. Kimerling, and J. Michel, “Toward a Germanium Laser for Integrated Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[Crossref]

2009 (2)

P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
[Crossref]

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

2007 (4)

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

2006 (2)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
[Crossref]

2003 (1)

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

2000 (1)

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

1998 (1)

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

1997 (2)

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci. 117–118(6), 771–775 (1997).
[Crossref]

1994 (1)

H. J. Yeh and J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64(12), 1466–1468 (1994).
[Crossref]

1990 (1)

D. G. Deppe, N. Chand, J. P. V. D. Ziel, and G. J. Zydzik, “AlxGa1-xAs-GaAs vertical-cavity surface-emitting laser grown on Si substrate,” Appl. Phys. Lett. 56(8), 740–742 (1990).
[Crossref]

1965 (1)

M. S. Abrahams and C. J. Buiocchi, “Etching of Dislocations on the Low-Index Faces of GaAs,” J. Appl. Phys. 36(9), 2855–2863 (1965).
[Crossref]

Abrahams, M. S.

M. S. Abrahams and C. J. Buiocchi, “Etching of Dislocations on the Low-Index Faces of GaAs,” J. Appl. Phys. 36(9), 2855–2863 (1965).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Adekore, B.

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Bai, J.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
[Crossref]

Buiocchi, C. J.

M. S. Abrahams and C. J. Buiocchi, “Etching of Dislocations on the Low-Index Faces of GaAs,” J. Appl. Phys. 36(9), 2855–2863 (1965).
[Crossref]

Campenhout, J. V.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Carroll, M.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
[Crossref]

Chan, W.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Chand, N.

D. G. Deppe, N. Chand, J. P. V. D. Ziel, and G. J. Zydzik, “AlxGa1-xAs-GaAs vertical-cavity surface-emitting laser grown on Si substrate,” Appl. Phys. Lett. 56(8), 740–742 (1990).
[Crossref]

Cheng, Z.

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

Cheng, Z. Y.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Christenson, G.

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

Currie, M. T.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Curtin, M.

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
[Crossref]

Deppe, D. G.

D. G. Deppe, N. Chand, J. P. V. D. Ziel, and G. J. Zydzik, “AlxGa1-xAs-GaAs vertical-cavity surface-emitting laser grown on Si substrate,” Appl. Phys. Lett. 56(8), 740–742 (1990).
[Crossref]

Dudley, M.

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

Egawa, T.

T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci. 117–118(6), 771–775 (1997).
[Crossref]

Ejeckam, F.

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

Fiorenza, J. G.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
[Crossref]

Fitzgerald, E. A.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Groenert, M.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Hydrick, J. M.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Iga, K.

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

Jang, K.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

Jang, K. S.

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Jimbo, T.

T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci. 117–118(6), 771–775 (1997).
[Crossref]

Joo, J.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Kim, G.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Kim, I. G.

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Kim, S.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Kim, S. A.

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Kimerling, L.

X. Sun, J. Liu, L. Kimerling, and J. Michel, “Toward a Germanium Laser for Integrated Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[Crossref]

Kwack, M.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

Kwack, M. J.

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Langdo, T. A.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Leitz, C. W.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Li, J.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Li, J. Z.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Liu, J.

X. Sun, J. Liu, L. Kimerling, and J. Michel, “Toward a Germanium Laser for Integrated Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[Crossref]

Lo, Y.

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

Lochtefeld, A.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
[Crossref]

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
[Crossref]

Michel, J.

X. Sun, J. Liu, L. Kimerling, and J. Michel, “Toward a Germanium Laser for Integrated Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[Crossref]

Murata, Y.

T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci. 117–118(6), 771–775 (1997).
[Crossref]

Oh, J. H.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Park, H.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Park, J.

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

Park, J. S.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Park, J.-S.

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
[Crossref]

Pitera, A. J.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

Qian, Y.

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

Samavedam, S. B.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Schroeder, T.

P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
[Crossref]

Shellenbarger, Z.

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Smith, J. S.

H. J. Yeh and J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64(12), 1466–1468 (1994).
[Crossref]

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Sun, X.

X. Sun, J. Liu, L. Kimerling, and J. Michel, “Toward a Germanium Laser for Integrated Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[Crossref]

Thourhout, D. V.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Umeno, M.

T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci. 117–118(6), 771–775 (1997).
[Crossref]

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Yang, V. K.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

Yeh, H. J.

H. J. Yeh and J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64(12), 1466–1468 (1994).
[Crossref]

Zaumseil, P.

P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
[Crossref]

Zhang, J.

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

Zhang, Z.

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

Zhu, Z.

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

Ziel, J. P. V. D.

D. G. Deppe, N. Chand, J. P. V. D. Ziel, and G. J. Zydzik, “AlxGa1-xAs-GaAs vertical-cavity surface-emitting laser grown on Si substrate,” Appl. Phys. Lett. 56(8), 740–742 (1990).
[Crossref]

Zydzik, G. J.

D. G. Deppe, N. Chand, J. P. V. D. Ziel, and G. J. Zydzik, “AlxGa1-xAs-GaAs vertical-cavity surface-emitting laser grown on Si substrate,” Appl. Phys. Lett. 56(8), 740–742 (1990).
[Crossref]

Appl. Phys. Lett. (6)

H. J. Yeh and J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64(12), 1466–1468 (1994).
[Crossref]

D. G. Deppe, N. Chand, J. P. V. D. Ziel, and G. J. Zydzik, “AlxGa1-xAs-GaAs vertical-cavity surface-emitting laser grown on Si substrate,” Appl. Phys. Lett. 56(8), 740–742 (1990).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett. 90(5), 052113 (2007).
[Crossref]

J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, “Study of the defect elimination mechanisms in aspect ratio trapping Ge growth,” Appl. Phys. Lett. 90(10), 101902 (2007).
[Crossref]

Appl. Surf. Sci. (1)

T. Egawa, Y. Murata, T. Jimbo, and M. Umeno, “Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD,” Appl. Surf. Sci. 117–118(6), 771–775 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

X. Sun, J. Liu, L. Kimerling, and J. Michel, “Toward a Germanium Laser for Integrated Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[Crossref]

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

Z. Zhu, F. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. Christenson, and Y. Lo, “Wafer bonding technology and its applications in optoelectronic devices and materials,” IEEE J. Sel. Top. Quantum Electron. 3(3), 927–936 (1997).
[Crossref]

J. Appl. Phys. (3)

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

P. Zaumseil, T. Schroeder, J. Park, J. G. Fiorenza, and A. Lochtefeld, “A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si(001) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques,” J. Appl. Phys. 106(9), 093524 (2009).
[Crossref]

M. S. Abrahams and C. J. Buiocchi, “Etching of Dislocations on the Low-Index Faces of GaAs,” J. Appl. Phys. 36(9), 2855–2863 (1965).
[Crossref]

J. Electrochem. Soc. (1)

J. Z. Li, J. M. Hydrick, J. S. Park, J. Li, J. Bai, Z. Y. Cheng, M. Carroll, J. G. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping,” J. Electrochem. Soc. 156(7), H574–H578 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

J.-S. Park, M. Curtin, J. Bai, M. Carroll, and A. Lochtefeld, “Growth of Ge Thick Layers on Si(001) Substrates Using Reduced Pressure Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(11), 8581–8585 (2006).
[Crossref]

Nat. Photonics (2)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, and D. V. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Proc. SPIE (1)

M. Kwack, K. Jang, J. Joo, H. Park, J. H. Oh, J. Park, S. Kim, and G. Kim, “Device characterization of the VCSEL-on-silicon as an on chip light source,” Proc. SPIE 9752, 97521A (2016).
[Crossref]

Sci. Rep. (1)

G. Kim, H. Park, J. Joo, K. S. Jang, M. J. Kwack, S. Kim, I. G. Kim, J. H. Oh, S. A. Kim, J. Park, and S. Kim, “Single-chip photonic transceiver based on bulk-silicon, as a chiplevel photonic I/O platform for optical interconnects,” Sci. Rep. 5, 11329 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic structure of the DBRs grown on Ge/Si ART substrate with GaAs buffer layer.
Fig. 2
Fig. 2 (a) Normal-incidence reflectance spectra of bulk GaAs-based DBRs and ART-Ge/Si-based DBRs taken at the center of each sample normalized by the maximum intensity. The ART-Ge/Si-based DBRs were grown on parallel SiO2 trench pattern with 1 μm trench spacing. (b) Normal-incidence reflectance spectra of the ART-Ge/Si-based DBRs measured at 5 spots (a to k) across a 12 mm by 12 mm region with the same trench pattern showing the cross-sample non-uniformity, which are normalized by the maximum intensity of the spectrum from the center spot “k” (the red line). (c) Normal-incidence reflectance spectra of bulk GaAs-based DBRs measured at 10 spots (a to k) across a 3” bulk GaAs wafer showing the cross-sample reflectance non-uniformity, which are normalized by the maximum intensity of the spectrum from the center spot “f” (the orange line).
Fig. 3
Fig. 3 (a) 004 X-ray scans of ART substrate, ART-based DBR (ART-DBR) and bulk GaAs-based DBR (GaAs-DBR); (b) 002 scans of ART-DBR and bulk GaAs-based DBR. The ART-substrate and ART-based DBRs were grown on parallel SiO2 trench pattern with 1 μm trench spacing.
Fig. 4
Fig. 4 Cross-section TEM images of Ge/Si ART-based DBRs at two different magnifications.
Fig. 5
Fig. 5 XTEM image of a full structure of GaAs/ART-Ge/Si-based DBRs.

Metrics