Abstract

Abstract: Bismuth-substituted iron garnet thin films of high quality are prepared by using RF magnetron sputtering technique in pure argon (Ar) plasma. All the developed garnet films show high magneto-optic (MO) response after being optimally annealed across the visible range wavelengths. The garnet films display almost in-plane magnetization component with adequate Faraday rotation and relatively low optical absorption over a wide spectral range of frequencies from visible to the infrared. These garnet-type thin films demonstrate excellent MO properties together with very low coercive field of about 30 Oe, and can be used in a wide range of magneto optical applications, especially in magneto-plasmonic/magneto-photonic crystal based microdevices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics

M. Nur-E Alam, Mikhail Vasiliev, and Kamal Alameh
Opt. Mater. Express 4(9) 1866-1875 (2014)

RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region

Mikhail Vasiliev, Mohammad Nur-E Alam, Viacheslav A. Kotov, Kamal Alameh, Vladimir I. Belotelov, Vladimir I. Burkov, and Anatoly K. Zvezdin
Opt. Express 17(22) 19519-19535 (2009)

Highly bismuth-substituted, record-performance magneto-optic garnet materials with low coercivity for applications in integrated optics, photonic crystals, imaging and sensing

Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, and Kamal Alameh
Opt. Mater. Express 1(3) 413-427 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, 1997).
  2. G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of Bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
    [Crossref]
  3. S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
    [Crossref]
  4. M. Nur-E-Alam, M Vasiliev, and K Alameh, “Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
    [Crossref]
  5. H. Taketoshi, M. Yukio, and N. Junichiro, “Growth and characterization of Liquid-Phase Epitaxial Bi-Substituted iron garnet films for magneto-optic application,” Jpn. J. Appl. Phys.24(10), (1985).
  6. M. Huang and S. Zhang, “A new Bi-substituted rare-earth iron garnet for a wideband and temperature-stabilized optical isolator,” J. Mater. Res. 15(08), 1665–1668 (2000).
    [Crossref]
  7. M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
    [Crossref]
  8. E. V. Anoikin and P. J. Sides, “Plasma-activated chemical vapor deposition of Bismuth-substituted iron garnets for magneto-optical data storage,” IEEE Trans. Magn. 31(6), 3239–3341 (1995).
    [Crossref]
  9. S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
    [Crossref]
  10. T. Aichele, A. Lorenz, R. Hergt, and P. Gornert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38(78), 575–587 (2003).
    [Crossref]
  11. M. Gomi, T. Tanida, and M. Abe, “RF sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
    [Crossref]
  12. D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Belotelov, “Transverse magnetic field impact on waveguide modes of photonic crystals,” Opt. Lett. 41(16), 3813–3816 (2016).
    [Crossref] [PubMed]
  13. S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
    [Crossref]
  14. M. Nur-E-Alam, M Vasiliev, and K Alameh, “Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics,” Opt. Mater. Express 4(9), 1866–1875 (2014).
    [Crossref]
  15. M. Vasiliev, M. Nur-E- Alam, V. A Kotov, K Alameh, V. I. Belotelov, V. I. Burkov, and A. K Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
    [Crossref] [PubMed]
  16. M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
    [Crossref]
  17. A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
    [Crossref]
  18. Q. Yang, H. Zhang, Q. Wen, and Y. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
    [Crossref]
  19. M. Nur-E-Alam, M Vasiliev, and K Alameh, “Growth, characterisation, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures,” Int. J. of Materials Engineering Innovation. 5(3), 172–181 (2014).
    [Crossref]
  20. M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
    [Crossref]
  21. M. B. Rabeh, R. Touatti, and M. Kanzari, “Substrate temperature effects on structural optical and electrical properties of vacuum evaporated Cu2ZnSnS4 thin films,” Int. J. of Engineering Practical Research (IJEPR). 2(2), 71 (2009).
  22. A. H. Eschenfelder, Magnetic Bubble Technology (Springer-Verlag, 1980).
  23. B. D. Cullity, Elements of X-Ray Diffraction, 2nd edition (Addison-Wesley Publishing Company, Inc., 1978).
  24. Z. Abbas, R. M. Al-habashi, K. Khalid, and M. Maarof, “Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixing oxides (MCMO) method,” European Journal of Scientific Research. 36(2), 154–160 (2009).
  25. S. Ruhela and S. K. Srivastava, “Study of XRD Pattern of Mixed Composite of MgTiO3 and ZnO,” Int. J. of Innovative Research in Science, Engineering and Technology 2(5), 1320–1322 (2013).

2016 (1)

2014 (2)

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics,” Opt. Mater. Express 4(9), 1866–1875 (2014).
[Crossref]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Growth, characterisation, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures,” Int. J. of Materials Engineering Innovation. 5(3), 172–181 (2014).
[Crossref]

2013 (2)

S. Ruhela and S. K. Srivastava, “Study of XRD Pattern of Mixed Composite of MgTiO3 and ZnO,” Int. J. of Innovative Research in Science, Engineering and Technology 2(5), 1320–1322 (2013).

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

2011 (2)

M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
[Crossref]

M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
[Crossref]

2010 (1)

Q. Yang, H. Zhang, Q. Wen, and Y. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

2009 (3)

M. Vasiliev, M. Nur-E- Alam, V. A Kotov, K Alameh, V. I. Belotelov, V. I. Burkov, and A. K Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[Crossref] [PubMed]

Z. Abbas, R. M. Al-habashi, K. Khalid, and M. Maarof, “Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixing oxides (MCMO) method,” European Journal of Scientific Research. 36(2), 154–160 (2009).

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[Crossref]

2007 (1)

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[Crossref]

2005 (1)

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[Crossref]

2003 (1)

T. Aichele, A. Lorenz, R. Hergt, and P. Gornert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38(78), 575–587 (2003).
[Crossref]

2001 (1)

S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[Crossref]

2000 (1)

M. Huang and S. Zhang, “A new Bi-substituted rare-earth iron garnet for a wideband and temperature-stabilized optical isolator,” J. Mater. Res. 15(08), 1665–1668 (2000).
[Crossref]

1995 (1)

E. V. Anoikin and P. J. Sides, “Plasma-activated chemical vapor deposition of Bismuth-substituted iron garnets for magneto-optical data storage,” IEEE Trans. Magn. 31(6), 3239–3341 (1995).
[Crossref]

1985 (1)

M. Gomi, T. Tanida, and M. Abe, “RF sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[Crossref]

1976 (1)

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of Bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

Abbas, Z.

Z. Abbas, R. M. Al-habashi, K. Khalid, and M. Maarof, “Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixing oxides (MCMO) method,” European Journal of Scientific Research. 36(2), 154–160 (2009).

Abe, M.

M. Gomi, T. Tanida, and M. Abe, “RF sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[Crossref]

Abell, J. S.

S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[Crossref]

Adyam, V.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[Crossref]

Aichele, T.

T. Aichele, A. Lorenz, R. Hergt, and P. Gornert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38(78), 575–587 (2003).
[Crossref]

Alameh, K

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Growth, characterisation, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures,” Int. J. of Materials Engineering Innovation. 5(3), 172–181 (2014).
[Crossref]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics,” Opt. Mater. Express 4(9), 1866–1875 (2014).
[Crossref]

M. Vasiliev, M. Nur-E- Alam, V. A Kotov, K Alameh, V. I. Belotelov, V. I. Burkov, and A. K Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[Crossref] [PubMed]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[Crossref]

Alameh, K.

Al-habashi, R. M.

Z. Abbas, R. M. Al-habashi, K. Khalid, and M. Maarof, “Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixing oxides (MCMO) method,” European Journal of Scientific Research. 36(2), 154–160 (2009).

Amara, S.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Amighian, J.

M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
[Crossref]

Anoikin, E. V.

E. V. Anoikin and P. J. Sides, “Plasma-activated chemical vapor deposition of Bismuth-substituted iron garnets for magneto-optical data storage,” IEEE Trans. Magn. 31(6), 3239–3341 (1995).
[Crossref]

Belotelov, V.

Belotelov, V. I.

Benazzouz, C.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Berzhansky, V.

Bouabellou, A.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Bouachiba, Y.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Bouafia, M.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Burkov, V. I.

Dagesyan, S.

Ferrera, M.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Gomi, M.

M. Gomi, T. Tanida, and M. Abe, “RF sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[Crossref]

Gornert, P.

T. Aichele, A. Lorenz, R. Hergt, and P. Gornert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38(78), 575–587 (2003).
[Crossref]

Grishin, A. M.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[Crossref]

S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[Crossref]

Hamidi, S. M.

M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
[Crossref]

Hanini, F.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Hasanpour, A.

M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
[Crossref]

Hergt, R.

T. Aichele, A. Lorenz, R. Hergt, and P. Gornert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38(78), 575–587 (2003).
[Crossref]

Holmes, B.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Huang, M.

M. Huang and S. Zhang, “A new Bi-substituted rare-earth iron garnet for a wideband and temperature-stabilized optical isolator,” J. Mater. Res. 15(08), 1665–1668 (2000).
[Crossref]

Hutchings, D.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Junichiro, N.

H. Taketoshi, M. Yukio, and N. Junichiro, “Growth and characterization of Liquid-Phase Epitaxial Bi-Substituted iron garnet films for magneto-optic application,” Jpn. J. Appl. Phys.24(10), (1985).

Kahl, S.

S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[Crossref]

Kalish, A.

Kang, S.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[Crossref]

Kawano, K.

S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[Crossref]

Kerdja, T.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Kermiche, F.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Khalid, K.

Z. Abbas, R. M. Al-habashi, K. Khalid, and M. Maarof, “Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixing oxides (MCMO) method,” European Journal of Scientific Research. 36(2), 154–160 (2009).

Kharstev, S. I.

S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[Crossref]

Khartsev, S. I.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[Crossref]

Khokhlov, N.

Kotov, V. A

M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
[Crossref]

M. Vasiliev, M. Nur-E- Alam, V. A Kotov, K Alameh, V. I. Belotelov, V. I. Burkov, and A. K Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[Crossref] [PubMed]

Lacklison, D. E.

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of Bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

Lee, Y. P

M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
[Crossref]

Lee, Y. T

M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
[Crossref]

Li, Q.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[Crossref]

Liu, Y.

Q. Yang, H. Zhang, Q. Wen, and Y. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Lorenz, A.

T. Aichele, A. Lorenz, R. Hergt, and P. Gornert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38(78), 575–587 (2003).
[Crossref]

Maarof, M.

Z. Abbas, R. M. Al-habashi, K. Khalid, and M. Maarof, “Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixing oxides (MCMO) method,” European Journal of Scientific Research. 36(2), 154–160 (2009).

Menakh, S.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Morandotti, R.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Mozaffari, M.

M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
[Crossref]

Nur-E- Alam, M.

Nur-E-Alam, M.

D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Belotelov, “Transverse magnetic field impact on waveguide modes of photonic crystals,” Opt. Lett. 41(16), 3813–3816 (2016).
[Crossref] [PubMed]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics,” Opt. Mater. Express 4(9), 1866–1875 (2014).
[Crossref]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Growth, characterisation, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures,” Int. J. of Materials Engineering Innovation. 5(3), 172–181 (2014).
[Crossref]

M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
[Crossref]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[Crossref]

Perumal, P

M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
[Crossref]

Prokopov, A.

Razzari, L.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Roorda, S.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Ross, G.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Ruhela, S.

S. Ruhela and S. K. Srivastava, “Study of XRD Pattern of Mixed Composite of MgTiO3 and ZnO,” Int. J. of Innovative Research in Science, Engineering and Technology 2(5), 1320–1322 (2013).

Scott, G. B.

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of Bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

Sekhar, M. C.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Shaposhnikov, A.

Sides, P. J.

E. V. Anoikin and P. J. Sides, “Plasma-activated chemical vapor deposition of Bismuth-substituted iron garnets for magneto-optical data storage,” IEEE Trans. Magn. 31(6), 3239–3341 (1995).
[Crossref]

Sorel, M.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Srivastava, S. K.

S. Ruhela and S. K. Srivastava, “Study of XRD Pattern of Mixed Composite of MgTiO3 and ZnO,” Int. J. of Innovative Research in Science, Engineering and Technology 2(5), 1320–1322 (2013).

Sylgacheva, D.

Taabouche, A.

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Taketoshi, H.

H. Taketoshi, M. Yukio, and N. Junichiro, “Growth and characterization of Liquid-Phase Epitaxial Bi-Substituted iron garnet films for magneto-optic application,” Jpn. J. Appl. Phys.24(10), (1985).

Tanida, T.

M. Gomi, T. Tanida, and M. Abe, “RF sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[Crossref]

Tehranchi, M. M.

M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
[Crossref]

Vasiliev, M

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Growth, characterisation, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures,” Int. J. of Materials Engineering Innovation. 5(3), 172–181 (2014).
[Crossref]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics,” Opt. Mater. Express 4(9), 1866–1875 (2014).
[Crossref]

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[Crossref]

Vasiliev, M.

Wen, Q.

Q. Yang, H. Zhang, Q. Wen, and Y. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Yang, Q.

Q. Yang, H. Zhang, Q. Wen, and Y. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Yin, S.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[Crossref]

Yukio, M.

H. Taketoshi, M. Yukio, and N. Junichiro, “Growth and characterization of Liquid-Phase Epitaxial Bi-Substituted iron garnet films for magneto-optic application,” Jpn. J. Appl. Phys.24(10), (1985).

Zaezjev, M.

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

Zhang, H.

Q. Yang, H. Zhang, Q. Wen, and Y. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Zhang, S.

M. Huang and S. Zhang, “A new Bi-substituted rare-earth iron garnet for a wideband and temperature-stabilized optical isolator,” J. Mater. Res. 15(08), 1665–1668 (2000).
[Crossref]

Zhu, Y.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[Crossref]

Zvezdin, A. K

Advances in Materials Physics and Chemistry. (1)

A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of Substrates on the Properties of ZnO Thin Films Grown by Pulsed Laser Deposition,” Advances in Materials Physics and Chemistry. 3(04), 209–213 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[Crossref]

Cryst. Res. Technol. (1)

T. Aichele, A. Lorenz, R. Hergt, and P. Gornert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38(78), 575–587 (2003).
[Crossref]

European Journal of Scientific Research. (1)

Z. Abbas, R. M. Al-habashi, K. Khalid, and M. Maarof, “Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixing oxides (MCMO) method,” European Journal of Scientific Research. 36(2), 154–160 (2009).

IEEE Trans. Magn. (4)

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of Bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

S. Kahl, A. M. Grishin, S. I. Kharstev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 thin film visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[Crossref]

E. V. Anoikin and P. J. Sides, “Plasma-activated chemical vapor deposition of Bismuth-substituted iron garnets for magneto-optical data storage,” IEEE Trans. Magn. 31(6), 3239–3341 (1995).
[Crossref]

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[Crossref]

Int. J. of Innovative Research in Science, Engineering and Technology (1)

S. Ruhela and S. K. Srivastava, “Study of XRD Pattern of Mixed Composite of MgTiO3 and ZnO,” Int. J. of Innovative Research in Science, Engineering and Technology 2(5), 1320–1322 (2013).

Int. J. of Materials Engineering Innovation. (1)

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Growth, characterisation, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures,” Int. J. of Materials Engineering Innovation. 5(3), 172–181 (2014).
[Crossref]

J. Appl. Phys. (2)

M. Gomi, T. Tanida, and M. Abe, “RF sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[Crossref]

Q. Yang, H. Zhang, Q. Wen, and Y. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

J. Mater. Res. (1)

M. Huang and S. Zhang, “A new Bi-substituted rare-earth iron garnet for a wideband and temperature-stabilized optical isolator,” J. Mater. Res. 15(08), 1665–1668 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Vasiliev, M. Nur-E-Alam, P Perumal, Y. T Lee, V. A Kotov, and Y. P Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess cosputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44, 075002 (2011).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

M. M. Tehranchi, S. M. Hamidi, A. Hasanpour, M. Mozaffari, and J. Amighian, “The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition,” Opt. Laser Technol. 43(3), 609–612 (2011).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

M. Nur-E-Alam, M Vasiliev, and K Alameh, “Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[Crossref]

Other (6)

H. Taketoshi, M. Yukio, and N. Junichiro, “Growth and characterization of Liquid-Phase Epitaxial Bi-Substituted iron garnet films for magneto-optic application,” Jpn. J. Appl. Phys.24(10), (1985).

M. Zaezjev, M. C. Sekhar, M. Ferrera, L. Razzari, G. Ross, B. Holmes, M. Sorel, D. Hutchings, S. Roorda, and R. Morandotti, “Magneto-optic iron-garnet thin films for integrated optical applications,” SPIE Newsroom (2007), doi:.
[Crossref]

M. B. Rabeh, R. Touatti, and M. Kanzari, “Substrate temperature effects on structural optical and electrical properties of vacuum evaporated Cu2ZnSnS4 thin films,” Int. J. of Engineering Practical Research (IJEPR). 2(2), 71 (2009).

A. H. Eschenfelder, Magnetic Bubble Technology (Springer-Verlag, 1980).

B. D. Cullity, Elements of X-Ray Diffraction, 2nd edition (Addison-Wesley Publishing Company, Inc., 1978).

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 X-ray diffraction data sets obtained from two garnet layers deposited onto glass substrates from a sputtering target of composition type Bi2.1Dy0.9Fe3.9Ga1.1O12. The garnet films were optimally annealed.
Fig. 2
Fig. 2 EDS microanalysis results obtained from optimally annealed garnet thin films of composition type Bi2.1Dy0.9Fe3.9Ga1.1O12. (a) Typical measured EDS spectrum of a 1 micron-thick garnet sample prepared on glass substrate; (b) and (c) EDX composition measurement data obtained from a 200 nm (b) and a 1000 nm (c) thick garnet samples, respectively. These elemental measurements were performed using multiple scans in different spots on the sample, and the best average data were considered for sample analysis.
Fig. 3
Fig. 3 AFM images of an annealed garnet layer prepared on a Si substrate. (a) 2D surface morphology and roughness scale. (b) 3D image of the same area of size 2.5 μm x 2 μm. The garnet layer was annealed at 620°C for 3h.
Fig. 4
Fig. 4 (a) Derived absorption spectra of the garnet layers annealed at different annealing temperatures and process durations. The annealing regimes used to crystallize the garnet layers are mentioned. (b) Illustration of the peak-by-peak fitting of the measured (light orange continuous line) and modeled (blue dotted line) transmission spectra of a garnet layer. The refractive index spectra of garnet films obtained from wide-angle spectroscopic ellipsometry measurements were also used in software-assisted absorption coefficient fitting.
Fig. 5
Fig. 5 Measured specific Faraday rotation data points for 532 nm and 635 nm light for garnet layers sputtered onto glass substrates and subjected to different annealing regimes (temperatures and process durations are shown).
Fig. 6
Fig. 6 Values of MO figure of merit at 532 and 635 nm obtained in annealed garnet films, presented against the annealing regimes (temperatures and process durations) used to anneal the garnet layers after the sputtering deposition process.
Fig. 7
Fig. 7 Measured hysteresis loops of Faraday rotation as a function of applied magnetic field for two annealed garnet samples. Inset shows the achieved low coercive field and saturation magnetization values.

Tables (1)

Tables Icon

Table 1 Summary of the sputtering process parameters and conditions used to deposit the garnet thin film layers on glass substrates.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Specific Faraday rotation Θ F =Rotation angle ( one way ) / Film thickness (°/μm)
MO figure of merit Q = 2* Θ F /a (deg)

Metrics