Abstract

We show that the gamma radiation resistances of new type of phosphate glass can be greatly improved by CeO2 and Sb2O3 co-doping. With the doping of CeO2, the radiation resistance (transmittance decrease ratio) is improved from 57.39% to 73.9% at 525 nm, and from 56.4% to 61.9% at 385 nm, respectively, when optical glasses were exposed to the gamma radiation with the dose of 250 krad (Si). It further increases to 92.4% at 525 nm by co-doping with Sb2O3, meanwhile, the induced optical losses were distinctly restrained at 1064 nm and 1550 nm, which shows potential applications in the fields of space-born star camera systems, laser window optics, fiber gyroscopes and communications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses

Quanlong He, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(8) 2697-2705 (2017)

Natural healing behavior of gamma radiation induced defects in multicomponent phosphate glasses used for high energy UV lasers

Quanlong He, Yaoke Xue, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(9) 3284-3293 (2017)

Effects of doping SiO2 on the defect’s change in B2O3-containing phosphate based laser glasses used for high energy UV lasers

Mengya Sun, Zhanjun Duan, Pengfei Wang, Min Lu, and Bo Peng
Opt. Mater. Express 7(11) 4111-4122 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007).
    [Crossref] [PubMed]
  2. M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Thermal bleaching of photodarkening-induced loss in ytterbium-doped fibers,” Opt. Lett. 34(17), 2637–2639 (2009).
    [Crossref] [PubMed]
  3. S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
    [Crossref]
  4. G. M. Williams, M. A. Putnam, and E. J. Friebele, “Space radiation effects on erbium-doped fibers,” Proc. SPIE 2811, 30–37 (1996).
    [Crossref]
  5. M. Engholm and L. Norin, “Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”,” Opt. Lett. 33(11), 1216 (2008).
    [Crossref] [PubMed]
  6. G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
    [Crossref]
  7. G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).
    [Crossref]
  8. R. G. Ahrens, J. A. Abate, J. J. Jaques, H. M. Presby, A. B. Fields, D. J. DiGiovanni, R. S. Windeler, S. Kannan, and M. J. LuValle, “Radiation reliability of rare earth doped optical fibers for laser communication systems,” in Proc. IEEE MILCOM’99 (IEEE, 1999), pp. 694–697.
  9. B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
    [Crossref]
  10. G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).
  11. B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
    [Crossref]
  12. R. X. Xing, Y. B. Sheng, Z. J. Liu, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, J. Y. Li, and N. L. Dai, “Investigation on radiation resistance of Er/Ce co-doped silicate glasses under 5 kGy gamma-ray irradiation,” Opt. Mater. Express 2(10), 1329–1335 (2012).
    [Crossref]
  13. J. S. Stroud, “Color centers in a cerium‐containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
    [Crossref]
  14. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009).
    [Crossref] [PubMed]
  15. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
    [Crossref] [PubMed]
  16. L. L. Doskolovich, N. L. Kazanskiy, S. N. Khonina, R. V. Skidanov, N. Heikkilä, S. Siitonen, and J. Turunen, “Design and investigation of color separation diffraction gratings,” Appl. Opt. 46(15), 2825–2830 (2007).
    [Crossref] [PubMed]
  17. D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
    [Crossref]
  18. J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
    [Crossref]
  19. P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
    [Crossref] [PubMed]
  20. E. Loh, “Ultraviolet absorption spectra of Ce3+ in alkaline-earth fluorides,” Phys. Rev. 154(2), 270–276 (1967).
    [Crossref]
  21. P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).
  22. Q. L. He, P. F. Wang, M. Lu, and B. Peng, “Effects of gamma radiation and heat treatment on the photoluminescence of the fluoride-containing phosphate-based glasses,” ECS J. Solid State Sci. Technol. 5(10), R192–R197 (2016).
    [Crossref]
  23. X. B. Heng, Q. Qian, X. D. Chen, L. H. Liu, X. Zhao, D. D. Chen, and Z. M. Yang, “Reduced radiation damage in a multicomponent phosphate glass by Nb5+ or Sb3+ doping,” Opt. Mater. Express 5(10), 2272–2280 (2015).
    [Crossref]
  24. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray photoelectron spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Minnesota, 1978).
  25. P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
    [Crossref] [PubMed]
  26. A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
    [Crossref]
  27. D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).
  28. D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
    [Crossref]

2016 (3)

Q. L. He, P. F. Wang, M. Lu, and B. Peng, “Effects of gamma radiation and heat treatment on the photoluminescence of the fluoride-containing phosphate-based glasses,” ECS J. Solid State Sci. Technol. 5(10), R192–R197 (2016).
[Crossref]

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

2015 (3)

X. B. Heng, Q. Qian, X. D. Chen, L. H. Liu, X. Zhao, D. D. Chen, and Z. M. Yang, “Reduced radiation damage in a multicomponent phosphate glass by Nb5+ or Sb3+ doping,” Opt. Mater. Express 5(10), 2272–2280 (2015).
[Crossref]

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

2012 (1)

2009 (2)

2008 (2)

M. Engholm and L. Norin, “Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”,” Opt. Lett. 33(11), 1216 (2008).
[Crossref] [PubMed]

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

2007 (2)

2004 (1)

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

2002 (2)

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

2001 (1)

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

2000 (1)

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

1999 (1)

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

1998 (2)

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).
[Crossref]

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

1996 (1)

G. M. Williams, M. A. Putnam, and E. J. Friebele, “Space radiation effects on erbium-doped fibers,” Proc. SPIE 2811, 30–37 (1996).
[Crossref]

1994 (1)

G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).

1992 (1)

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
[Crossref]

1967 (1)

E. Loh, “Ultraviolet absorption spectra of Ce3+ in alkaline-earth fluorides,” Phys. Rev. 154(2), 270–276 (1967).
[Crossref]

1962 (1)

J. S. Stroud, “Color centers in a cerium‐containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
[Crossref]

Åberg, D.

Baccaro, S.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Blinkova, G. B.

G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).

Bliss, M.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Börjesson, L.

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

Cecilia, A.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Chen, D. D.

Chen, X. D.

Claessens, D.

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

Dai, N. L.

De Cock, E.

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

Dewandre, T. M.

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

Doskolovich, L. L.

Doyle, D. B.

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

Dupont, O.

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

Ebeling, P.

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

Ehrt, D.

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

Engholm, M.

Friebele, E. J.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).
[Crossref]

G. M. Williams, M. A. Putnam, and E. J. Friebele, “Space radiation effects on erbium-doped fibers,” Proc. SPIE 2811, 30–37 (1996).
[Crossref]

Friedrich, M.

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

Frischat, G. H.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
[Crossref]

Gao, F.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Gao, W.

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

Guo, H.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Gusarov, A. I.

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

Hayden, J. S.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
[Crossref]

He, Q.

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

He, Q. L.

Q. L. He, P. F. Wang, M. Lu, and B. Peng, “Effects of gamma radiation and heat treatment on the photoluminescence of the fluoride-containing phosphate-based glasses,” ECS J. Solid State Sci. Technol. 5(10), R192–R197 (2016).
[Crossref]

Heikkilä, N.

Heng, X. B.

Honkanen, S.

Hou, C.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Islamov, A. K.

G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).

Jäger, M.

Jelger, P.

Jetschke, S.

Jiang, Z. W.

Kazanskiy, N. L.

Khaidarova, K. A.

G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).

Khonina, S. N.

Koplow, J. P.

Laurell, F.

Leich, M.

Li, H. Q.

Li, J. Y.

Li, W.

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Liu, L. H.

Liu, Z. J.

Loh, E.

E. Loh, “Ultraviolet absorption spectra of Ce3+ in alkaline-earth fluorides,” Phys. Rev. 154(2), 270–276 (1967).
[Crossref]

Lu, M.

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Q. L. He, P. F. Wang, M. Lu, and B. Peng, “Effects of gamma radiation and heat treatment on the photoluminescence of the fluoride-containing phosphate-based glasses,” ECS J. Solid State Sci. Technol. 5(10), R192–R197 (2016).
[Crossref]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Mack, W. D.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

Marker, A. J.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
[Crossref]

Matic, A.

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

Mihokova, E.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Milbrath, B. D.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Möncke, D.

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

Montiel i Ponsoda, J. J.

Nikl, M.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Nitsch, K.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Norin, L.

Nuritdinov, I.

G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).

Peng, B.

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Q. L. He, P. F. Wang, M. Lu, and B. Peng, “Effects of gamma radiation and heat treatment on the photoluminescence of the fluoride-containing phosphate-based glasses,” ECS J. Solid State Sci. Technol. 5(10), R192–R197 (2016).
[Crossref]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Peng, J. G.

Peurrung, A. J.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Polato, P.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Putnam, M. A.

G. M. Williams, M. A. Putnam, and E. J. Friebele, “Space radiation effects on erbium-doped fibers,” Proc. SPIE 2811, 30–37 (1996).
[Crossref]

Qian, Q.

Rädlein, E.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
[Crossref]

Schwuchow, A.

Sheng, Y. B.

Siitonen, S.

Skidanov, R. V.

Söderlund, M. J.

Song, Z.

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

Speit, B.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
[Crossref]

Stroud, J. S.

J. S. Stroud, “Color centers in a cerium‐containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
[Crossref]

Turunen, J.

Unger, S.

Vakhidov, S. A.

G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).

Vautmans, L.

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

Wang, P.

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Wang, P. F.

Q. L. He, P. F. Wang, M. Lu, and B. Peng, “Effects of gamma radiation and heat treatment on the photoluminescence of the fluoride-containing phosphate-based glasses,” ECS J. Solid State Sci. Technol. 5(10), R192–R197 (2016).
[Crossref]

Weber, W. J.

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

Wen, D.

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

Williams, G. M.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).
[Crossref]

G. M. Williams, M. A. Putnam, and E. J. Friebele, “Space radiation effects on erbium-doped fibers,” Proc. SPIE 2811, 30–37 (1996).
[Crossref]

Wright, B. M.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

Xi, J.

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

Xing, R. X.

Xu, Y.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Yang, L. Y.

Yang, S.

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

Yang, Z. M.

Yao, D.

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

Zanella, G.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Zannoni, R.

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Zhao, X.

Zhou, Z.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

ECS J. Solid State Sci. Technol. (1)

Q. L. He, P. F. Wang, M. Lu, and B. Peng, “Effects of gamma radiation and heat treatment on the photoluminescence of the fluoride-containing phosphate-based glasses,” ECS J. Solid State Sci. Technol. 5(10), R192–R197 (2016).
[Crossref]

Glass Phys. Chem. (1)

G. B. Blinkova, S. A. Vakhidov, A. K. Islamov, I. Nuritdinov, and K. A. Khaidarova, “On the nature of yellow coloring in cerium-containing silica glasses,” Glass Phys. Chem. 20(3), 283–287 (1994).

Glass Sci. Technol. (2)

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

IEEE Trans. Nucl. Sci. (1)

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).
[Crossref]

J. Chem. Phys. (1)

J. S. Stroud, “Color centers in a cerium‐containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
[Crossref]

J. Inf. Comput. Sci. (1)

J. Xi, D. Wen, Z. Song, W. Gao, D. Yao, and S. Yang, “Rapid star extraction and high accuracy location in star image,” J. Inf. Comput. Sci. 12(8), 2929–2937 (2015).
[Crossref]

J. Mater. Res. (1)

B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res. 23(10), 2561–2581 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

Nucl. Inst. Methods Phys. A (1)

S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, and R. Zannoni, “Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses,” Nucl. Inst. Methods Phys. A 476(3), 785–789 (2002).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1–4), 384–386 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (2)

Philos. Mag. B (1)

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

Phys. Rev. (1)

E. Loh, “Ultraviolet absorption spectra of Ce3+ in alkaline-earth fluorides,” Phys. Rev. 154(2), 270–276 (1967).
[Crossref]

Proc. SPIE (3)

D. B. Doyle, T. M. Dewandre, D. Claessens, E. De Cock, L. Vautmans, O. Dupont, and A. I. Gusarov, “Radiation qualification and testing of a large number of optical glasses used in the ESA Fluid Science Laboratory on board the Columbus Orbital Facility of the International Space Station,” Proc. SPIE 4823, 124–131 (2002).
[Crossref]

G. M. Williams, M. A. Putnam, and E. J. Friebele, “Space radiation effects on erbium-doped fibers,” Proc. SPIE 2811, 30–37 (1996).
[Crossref]

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
[Crossref]

Sci. Rep. (2)

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Other (2)

C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray photoelectron spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Minnesota, 1978).

R. G. Ahrens, J. A. Abate, J. J. Jaques, H. M. Presby, A. B. Fields, D. J. DiGiovanni, R. S. Windeler, S. Kannan, and M. J. LuValle, “Radiation reliability of rare earth doped optical fibers for laser communication systems,” in Proc. IEEE MILCOM’99 (IEEE, 1999), pp. 694–697.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Measured transmission spectra, (b) calculated absorption spectra of G, G: Ce, G: Ce,Si and G: Ce,Sb glasses.
Fig. 2
Fig. 2 Measured transmission spectra and (Inset) photograph of (a) G, (b) G: Ce, (c) G: Ce,Si and (d) G: Ce,Sb glasses before and after gamma radiation (100 and 250 krad (Si), respectively).
Fig. 3
Fig. 3 The absorption spectra after minus the intrinsic absorbance of (a) G, (b) G: Ce, (c) G: Ce,Si and (d) G: Ce,Sb glasses after gamma radiation (100 and 250 krad (Si), respectively).
Fig. 4
Fig. 4 (a) Measured transmission spectra and (Inset) photographs of G: Ce, Sb-2 (higher Ce doping concentration) glasses before and after gamma radiation (100, 250 krad (Si), respectively), and (b) the absorption spectra after deducting the intrinsic absorbance of G: Ce,Sb-2 glass after gamma radiation (100 and 250 krad (Si), respectively).
Fig. 5
Fig. 5 Measured O1s XPS spectra of (a) G, (b) G: Ce, (c) G: Ce,Si and (d) G: Ce,Sb glasses with Gaussian peak fittings (blue and green curves represent NBO and BO, respectively).
Fig. 6
Fig. 6 Measured Raman spectra of G, G: Ce, G: Ce,Si and G: Ce,Sb glasses.
Fig. 7
Fig. 7 Measured EPR spectra of a (G), b (G: Ce), c (G: Ce,Si) and d (G: Ce,Sb) glasses before and after gamma radiation (250 krad (Si)).

Metrics