Abstract

The emerging field of quantum nanophotonics offers potential chip-scale integration of multi-functional quantum processing infrastructures. The key technological challenges lie on new material design and integration with quantum emitters. It is of fundamental importance in developing hybrid material platforms and experimental approaches to address a wide array of challenging issues that cannot be easily overcome with conventional quantum optics approaches. This special issue features 10 contributions that address various aspects of emerging quantum photonic platforms, devices and approaches that combine the advantages of several material systems to realize chip-scale quantum information processing in an efficient and robust manner.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Material platforms for integrated quantum photonics

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev
Opt. Mater. Express 7(1) 111-132 (2017)

On chip chirality-distinguishing beamsplitter

Fengchun Zhang, Yao Liang, Heran Zhang, Chong Lei, Jiayang Wu, Ning Zhu, Shuwen Zheng, Yong Zhang, Xu-Guang Huang, Baohua Jia, and Songhao Liu
Opt. Express 25(21) 24861-24871 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
    [Crossref] [PubMed]
  2. G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
    [Crossref] [PubMed]
  3. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [Crossref]
  4. O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
    [Crossref] [PubMed]
  5. Y. A. Kelaita, K. A. Fischer, T. M. Babinec, K. G. Lagoudakis, T. Sarmiento, A. Rundquist, A. Majumdar, and J. Vučković, “Hybrid metal-dielectric nanocavity for enhanced light-matter interactions,” Opt. Mater. Express 7(1), 231–239 (2017).
    [Crossref]
  6. M. G. Harats, N. Livneh, and R. Rapaport, “Design, fabrication and characterization of a hybrid metal-dielectric nanoantenna with a single nanocrystal for directional single photon emission,” Opt. Mater. Express (in press) (2017).
  7. S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Coupling of nitrogen-vacancy centers in a nanodiamond to a silver nanocube,” Opt. Mater. Express 6(11), 3394–3406 (2016).
    [Crossref]
  8. A. M. Mahmoud, I. Liberal, and N. Engheta, “Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling,” Opt. Mater. Express 7(2), 415–424 (2017).
    [Crossref]
  9. K. Chung, T. J. Karle, C. Wang, M. Loncar, S. Tomljenovic-Hanic, “Hybrid nanodiamond and titanium dioxide nanobeam cavity design,” Opt. Mater. Express (in press) (2017).
  10. G. Bappi, J. Flannery, R. A. Maruf, and M. Bajcsy, “Prospects and limitations of bottom-up fabricated hollow-core waveguides,” Opt. Mater. Express 7(1), 148–157 (2017).
    [Crossref]
  11. T. H. Stievater, D. A. Kozak, M. W. Pruessner, W. Marcel, R. Mahon, D. Park, W. S. Rabinovich, S. William, and F. K. Fatemi, “Modal characterization of nanophotonic waveguides for atom trapping,” Opt. Mater. Express 6(12), 3826–3837 (2016).
    [Crossref]
  12. S. Mahmoodian, K. Prindal-Nielsen, I. Sollner, S. Stobbe, and P. Lodahl, “Engineering chiral light-matter interaction in photonic crystal waveguides with slow light,” Opt. Mater. Express 7(1), 43–51 (2017).
    [Crossref]
  13. V. V. Vorobyov, A. Y. Kazakov, V. V. Soshenko, A. A. Korneev, M. Y. Shalaginov, S. V. Bolshedvorskii, V. N. Sorokin, A. V. Divochiy, Y. B. Vakhtomin, K. V. Smirnov, B. M. Voronov, V. M. Shalaev, A. V. Akimov, and G. N. Goltsman, “Superconducting detector for visible and near-infrared quantum emitters [Invited],” Opt. Mater. Express 7(2), 513–526 (2017).
    [Crossref]
  14. S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7(1), 111–132 (2017).
    [Crossref]

2017 (6)

2016 (2)

2015 (1)

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

2011 (1)

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
[Crossref] [PubMed]

2010 (1)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

2009 (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Akimov, A. V.

Andersen, S. K. H.

Babinec, T. M.

Bajcsy, M.

Bappi, G.

Benson, O.

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
[Crossref] [PubMed]

Bertet, P.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Bogdanov, S.

Bolshedvorskii, S. V.

Boltasseva, A.

Bozhevolnyi, S. I.

Divochiy, A. V.

Engheta, N.

Fatemi, F. K.

Fischer, K. A.

Flannery, J.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Goltsman, G. N.

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Kazakov, A. Y.

Kelaita, Y. A.

Korneev, A. A.

Kozak, D. A.

Kubo, Y.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Kumar, S.

Kurizki, G.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Lagoudakis, K. G.

Liberal, I.

Lodahl, P.

Mahmoodian, S.

Mahmoud, A. M.

Mahon, R.

Majumdar, A.

Marcel, W.

Maruf, R. A.

Mølmer, K.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Park, D.

Petrosyan, D.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Prindal-Nielsen, K.

Pruessner, M. W.

Rabinovich, W. S.

Rabl, P.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Rundquist, A.

Sarmiento, T.

Schmiedmayer, J.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

Shalaginov, M. Y.

Smirnov, K. V.

Sollner, I.

Sorokin, V. N.

Soshenko, V. V.

Stievater, T. H.

Stobbe, S.

Vakhtomin, Y. B.

Vorobyov, V. V.

Voronov, B. M.

Vuckovic, J.

William, S.

Nat. Photonics (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Nature (2)

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
[Crossref] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Opt. Mater. Express (8)

S. K. H. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Coupling of nitrogen-vacancy centers in a nanodiamond to a silver nanocube,” Opt. Mater. Express 6(11), 3394–3406 (2016).
[Crossref]

A. M. Mahmoud, I. Liberal, and N. Engheta, “Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling,” Opt. Mater. Express 7(2), 415–424 (2017).
[Crossref]

Y. A. Kelaita, K. A. Fischer, T. M. Babinec, K. G. Lagoudakis, T. Sarmiento, A. Rundquist, A. Majumdar, and J. Vučković, “Hybrid metal-dielectric nanocavity for enhanced light-matter interactions,” Opt. Mater. Express 7(1), 231–239 (2017).
[Crossref]

G. Bappi, J. Flannery, R. A. Maruf, and M. Bajcsy, “Prospects and limitations of bottom-up fabricated hollow-core waveguides,” Opt. Mater. Express 7(1), 148–157 (2017).
[Crossref]

T. H. Stievater, D. A. Kozak, M. W. Pruessner, W. Marcel, R. Mahon, D. Park, W. S. Rabinovich, S. William, and F. K. Fatemi, “Modal characterization of nanophotonic waveguides for atom trapping,” Opt. Mater. Express 6(12), 3826–3837 (2016).
[Crossref]

S. Mahmoodian, K. Prindal-Nielsen, I. Sollner, S. Stobbe, and P. Lodahl, “Engineering chiral light-matter interaction in photonic crystal waveguides with slow light,” Opt. Mater. Express 7(1), 43–51 (2017).
[Crossref]

V. V. Vorobyov, A. Y. Kazakov, V. V. Soshenko, A. A. Korneev, M. Y. Shalaginov, S. V. Bolshedvorskii, V. N. Sorokin, A. V. Divochiy, Y. B. Vakhtomin, K. V. Smirnov, B. M. Voronov, V. M. Shalaev, A. V. Akimov, and G. N. Goltsman, “Superconducting detector for visible and near-infrared quantum emitters [Invited],” Opt. Mater. Express 7(2), 513–526 (2017).
[Crossref]

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7(1), 111–132 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. U.S.A. 112(13), 3866–3873 (2015).
[Crossref] [PubMed]

Other (2)

K. Chung, T. J. Karle, C. Wang, M. Loncar, S. Tomljenovic-Hanic, “Hybrid nanodiamond and titanium dioxide nanobeam cavity design,” Opt. Mater. Express (in press) (2017).

M. G. Harats, N. Livneh, and R. Rapaport, “Design, fabrication and characterization of a hybrid metal-dielectric nanoantenna with a single nanocrystal for directional single photon emission,” Opt. Mater. Express (in press) (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics