Abstract

Strict control of composition is of paramount importance for the reproducible fabrication of advanced ceramics. In particular, the preparation of high-grade transparent ceramics of definite line-compounds requires that the ratio of major constitutive elements be quantified with a precision better than a fraction of a mole percent to prevent the precipitation of secondary phases and the scattering of light. Such a requirement poses difficult challenges to most analytical methods, especially when applied to nearly-stoichiometric insulating phases. In this work, we show that laser-induced breakdown spectroscopy (LIBS) is a well-suited technique for the assessment of non-stoichiometry in yttrium aluminum garnet (YAG) ceramics and that the aluminum to yttrium ratio can be determined with a resolution of 0.3 mol %, well within the phase boundaries of YAG.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantification of SiO2 sintering additive in YAG transparent ceramics by laser-induced breakdown spectroscopy (LIBS)

Sudeep Jung Pandey, Mauro Martinez, Jan Hostaša, Laura Esposito, Matthieu Baudelet, and Romain Gaume
Opt. Mater. Express 7(5) 1666-1671 (2017)

Detection of trace elements in nondegradable organic spent clay waste using optimized dual-pulsed laser induced breakdown spectrometer

Ahmed Asaad I. Khalil, Mohammed A. Gondal, and Mohamed A. Dastageer
Appl. Opt. 53(8) 1709-1717 (2014)

Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy

Ahmed Asaad I. Khalil, Mohammed A. Gondal, Mohamed Shemis, and Irfan S. Khan
Appl. Opt. 54(8) 2123-2131 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Ma, T. Shimura, and H. Iwahara, “Ionic conduction and nonstoichiometry in Ba x Ce 0.90 Y 0.10 O 3− α,” Solid State Ion. 110(1-2), 103–110 (1998).
    [Crossref]
  2. Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
    [Crossref]
  3. E. Breckenfeld, Z. Chen, A. R. Damodaran, and L. W. Martin, “Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films,” ACS Appl. Mater. Interfaces 6(24), 22436–22444 (2014).
    [Crossref] [PubMed]
  4. O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
    [Crossref]
  5. C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
    [Crossref]
  6. X. Hao and J. Zhai, “Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric thin films grown on platinum-buffered silicon substrates,” J. Phys. D Appl. Phys. 40(23), 7447–7453 (2007).
    [Crossref]
  7. Z. Surowiak, M. F. Kupriyanov, A. E. Panich, and R. Skulski, “The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3,” J. Eur. Ceram. Soc. 21(15), 2783–2786 (2001).
    [Crossref]
  8. D. Shima and S. Haile, “The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate,” Solid State Ion. 97(1-4), 443–455 (1997).
    [Crossref]
  9. X. Hao, J. Zhou, and S. An, “Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films,” J. Am. Ceram. Soc. 94(6), 1647–1650 (2011).
    [Crossref]
  10. T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
    [Crossref]
  11. J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
    [Crossref]
  12. M. Richardson and R. Gaume, “Transparent ceramics for lasers-a game-changer,” Am. Ceram. Soc. Bull. 91, 30 (2012).
  13. A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans. 46(5), 996–1003 (2005).
    [Crossref]
  14. L. B. Kong, Y. Huang, W. Que, T. Zhang, S. Li, J. Zhang, Z. Dong, and D. Tang, Transparent Ceramics (Springer, 2015).
  15. X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
    [Crossref]
  16. H. Eilers, “Fabrication, optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria,” J. Eur. Ceram. Soc. 27(16), 4711–4717 (2007).
    [Crossref]
  17. J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
    [Crossref]
  18. S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
    [Crossref]
  19. A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
    [Crossref]
  20. L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
    [Crossref]
  21. A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
    [Crossref]
  22. R. Boulesteix, A. Maître, J.-F. Baumard, Y. Rabinovitch, and F. Reynaud, “Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties,” Opt. Express 18(14), 14992–15002 (2010).
    [Crossref] [PubMed]
  23. X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
    [Crossref]
  24. C.-H. Lu and Y.-C. Chen, “Sintering and decomposition of ferroelectric layered perovskites,” J. Eur. Ceram. Soc. 19(16), 2909–2915 (1999).
    [Crossref]
  25. J. McCloy and R. Tustison, Chemical Vapor Deposited Zinc Sulfide (SPIE Press, 2013).
  26. J. Abell, I. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci. 9(4), 527–537 (1974).
    [Crossref]
  27. A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
    [Crossref]
  28. R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 [micro sign]m absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
    [Crossref]
  29. S. Shikao and W. Jiye, “Combustion synthesis of Eu 3+ activated Y 3 Al 5 O 12 phosphor nanoparticles,” J. Alloys Compd. 327(1-2), 82–86 (2001).
    [Crossref]
  30. Y. Wang, G. Baldoni, W. H. Rhodes, C. Brecher, A. Shah, U. Shirwadkar, J. Glodo, N. Cherepy, and S. Payne, “Transparent garnet ceramic scintillators for gamma-ray detection,” in SPIE Optical Engineering + Applications (International Society for Optics and Photonics 2012), pp. 850717–850717–850718.
  31. R. Gaume, D. Steere, and S. Sundaram, “Effect of nonstoichiometry on the terahertz absorption of Y 3 Al 5 O 12 optical ceramics,” J. Mater. Res. 29(19), 2338–2343 (2014).
    [Crossref]
  32. V. V. Osiko, Growth and Defect Structures (Springer-Verlag, 1984).
  33. K.-T. Tsen, M. Baudelet, J.-J. Song, M. Boueri, J. Yu, M. Betz, A. Y. Elezzabi, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
  34. E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
    [Crossref]
  35. J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 831–838 (2001).
    [Crossref]
  36. R. J. Lasheras, C. Bello-Gálvez, and J. M. Anzano, “Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard,” Spectrochim. Acta B At. Spectrosc. 82, 65–70 (2013).
    [Crossref]
  37. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta B At. Spectrosc. 60(11), 1482–1485 (2005).
    [Crossref]
  38. A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
    [Crossref]
  39. J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
    [Crossref]
  40. H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
    [Crossref]
  41. A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
    [Crossref]
  42. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
    [Crossref]
  43. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid‐state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
    [Crossref]
  44. R. Noll, Laser-Induced Breakdown Spectroscopy(Springer, 2012).
  45. V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
    [Crossref]
  46. R. D. Cowan and G. H. Dieke, “Self-Absorption of Spectrum Lines,” Rev. Mod. Phys. 20(2), 418–455 (1948).
    [Crossref]
  47. C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B At. Spectrosc. 63(9), 893–916 (2008).
    [Crossref]
  48. L. J. Radziemski and D. A. Cremers, Handbook of Laser Induced Breakdown Spectroscopy, (John Wiley & Sons, 2006).

2016 (1)

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

2015 (2)

X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
[Crossref]

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

2014 (5)

R. Gaume, D. Steere, and S. Sundaram, “Effect of nonstoichiometry on the terahertz absorption of Y 3 Al 5 O 12 optical ceramics,” J. Mater. Res. 29(19), 2338–2343 (2014).
[Crossref]

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

E. Breckenfeld, Z. Chen, A. R. Damodaran, and L. W. Martin, “Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films,” ACS Appl. Mater. Interfaces 6(24), 22436–22444 (2014).
[Crossref] [PubMed]

V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
[Crossref]

2013 (1)

R. J. Lasheras, C. Bello-Gálvez, and J. M. Anzano, “Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard,” Spectrochim. Acta B At. Spectrosc. 82, 65–70 (2013).
[Crossref]

2012 (4)

J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
[Crossref]

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 [micro sign]m absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

M. Richardson and R. Gaume, “Transparent ceramics for lasers-a game-changer,” Am. Ceram. Soc. Bull. 91, 30 (2012).

2011 (2)

X. Hao, J. Zhou, and S. An, “Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films,” J. Am. Ceram. Soc. 94(6), 1647–1650 (2011).
[Crossref]

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

2010 (4)

A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

R. Boulesteix, A. Maître, J.-F. Baumard, Y. Rabinovitch, and F. Reynaud, “Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties,” Opt. Express 18(14), 14992–15002 (2010).
[Crossref] [PubMed]

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
[Crossref]

2009 (3)

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
[Crossref]

H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
[Crossref]

2008 (2)

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B At. Spectrosc. 63(9), 893–916 (2008).
[Crossref]

2007 (3)

H. Eilers, “Fabrication, optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria,” J. Eur. Ceram. Soc. 27(16), 4711–4717 (2007).
[Crossref]

X. Hao and J. Zhai, “Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric thin films grown on platinum-buffered silicon substrates,” J. Phys. D Appl. Phys. 40(23), 7447–7453 (2007).
[Crossref]

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

2005 (4)

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
[Crossref]

A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans. 46(5), 996–1003 (2005).
[Crossref]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta B At. Spectrosc. 60(11), 1482–1485 (2005).
[Crossref]

2001 (4)

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
[Crossref]

S. Shikao and W. Jiye, “Combustion synthesis of Eu 3+ activated Y 3 Al 5 O 12 phosphor nanoparticles,” J. Alloys Compd. 327(1-2), 82–86 (2001).
[Crossref]

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 831–838 (2001).
[Crossref]

Z. Surowiak, M. F. Kupriyanov, A. E. Panich, and R. Skulski, “The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3,” J. Eur. Ceram. Soc. 21(15), 2783–2786 (2001).
[Crossref]

1999 (1)

C.-H. Lu and Y.-C. Chen, “Sintering and decomposition of ferroelectric layered perovskites,” J. Eur. Ceram. Soc. 19(16), 2909–2915 (1999).
[Crossref]

1998 (1)

G. Ma, T. Shimura, and H. Iwahara, “Ionic conduction and nonstoichiometry in Ba x Ce 0.90 Y 0.10 O 3− α,” Solid State Ion. 110(1-2), 103–110 (1998).
[Crossref]

1997 (1)

D. Shima and S. Haile, “The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate,” Solid State Ion. 97(1-4), 443–455 (1997).
[Crossref]

1995 (1)

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid‐state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

1974 (1)

J. Abell, I. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci. 9(4), 527–537 (1974).
[Crossref]

1948 (1)

R. D. Cowan and G. H. Dieke, “Self-Absorption of Spectrum Lines,” Rev. Mod. Phys. 20(2), 418–455 (1948).
[Crossref]

Abell, J.

J. Abell, I. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci. 9(4), 527–537 (1974).
[Crossref]

Acker, J.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

Aggarwal, I.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Aguilera, J. A.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B At. Spectrosc. 63(9), 893–916 (2008).
[Crossref]

An, S.

X. Hao, J. Zhou, and S. An, “Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films,” J. Am. Ceram. Soc. 94(6), 1647–1650 (2011).
[Crossref]

Anzano, J. M.

R. J. Lasheras, C. Bello-Gálvez, and J. M. Anzano, “Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard,” Spectrochim. Acta B At. Spectrosc. 82, 65–70 (2013).
[Crossref]

Aoyagi, R.

C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
[Crossref]

Aragón, C.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B At. Spectrosc. 63(9), 893–916 (2008).
[Crossref]

Baker, C.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Bäuerle, D.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
[Crossref]

Baumard, J.-F.

Beldjilali, S.

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

Bello-Gálvez, C.

R. J. Lasheras, C. Bello-Gálvez, and J. M. Anzano, “Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard,” Spectrochim. Acta B At. Spectrosc. 82, 65–70 (2013).
[Crossref]

Boccaccini, A. R.

A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans. 46(5), 996–1003 (2005).
[Crossref]

Body, D.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta B At. Spectrosc. 60(11), 1482–1485 (2005).
[Crossref]

Boulesteix, R.

Breckenfeld, E.

E. Breckenfeld, Z. Chen, A. R. Damodaran, and L. W. Martin, “Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films,” ACS Appl. Mater. Interfaces 6(24), 22436–22444 (2014).
[Crossref] [PubMed]

Brooks, C. M.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Byer, R. L.

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 [micro sign]m absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

Cabanzo, R.

H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
[Crossref]

Cáceres, J. O.

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 831–838 (2001).
[Crossref]

Chadwick, B. L.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta B At. Spectrosc. 60(11), 1482–1485 (2005).
[Crossref]

Chen, G.

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

Chen, H.-H.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

Chen, S.

X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
[Crossref]

Chen, X.

X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
[Crossref]

Chen, Y.-C.

C.-H. Lu and Y.-C. Chen, “Sintering and decomposition of ferroelectric layered perovskites,” J. Eur. Ceram. Soc. 19(16), 2909–2915 (1999).
[Crossref]

Chen, Z.

E. Breckenfeld, Z. Chen, A. R. Damodaran, and L. W. Martin, “Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films,” ACS Appl. Mater. Interfaces 6(24), 22436–22444 (2014).
[Crossref] [PubMed]

Clequin, P.-M.

X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
[Crossref]

Cockayne, B.

J. Abell, I. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci. 9(4), 527–537 (1974).
[Crossref]

Cowan, R. D.

R. D. Cowan and G. H. Dieke, “Self-Absorption of Spectrum Lines,” Rev. Mod. Phys. 20(2), 418–455 (1948).
[Crossref]

Craciun, V.

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

Damodaran, A. R.

E. Breckenfeld, Z. Chen, A. R. Damodaran, and L. W. Martin, “Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films,” ACS Appl. Mater. Interfaces 6(24), 22436–22444 (2014).
[Crossref] [PubMed]

Denis, D.

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

Dericioglu, A. F.

A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans. 46(5), 996–1003 (2005).
[Crossref]

Dieke, G. H.

R. D. Cowan and G. H. Dieke, “Self-Absorption of Spectrum Lines,” Rev. Mod. Phys. 20(2), 418–455 (1948).
[Crossref]

Dlouhy, I.

A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans. 46(5), 996–1003 (2005).
[Crossref]

Eckert, J.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

Eilers, H.

H. Eilers, “Fabrication, optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria,” J. Eur. Ceram. Soc. 27(16), 4711–4717 (2007).
[Crossref]

Estupiñán, H.

H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
[Crossref]

Feigelson, R.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Feigelson, R. S.

S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
[Crossref]

Feng, M.

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

Fischer, C.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

Frantz, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Fuchs, G.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

Fujioka, C.

C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
[Crossref]

Furusato, I.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid‐state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

García, Y. O.

H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
[Crossref]

Gaume, R.

X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
[Crossref]

R. Gaume, D. Steere, and S. Sundaram, “Effect of nonstoichiometry on the terahertz absorption of Y 3 Al 5 O 12 optical ceramics,” J. Mater. Res. 29(19), 2338–2343 (2014).
[Crossref]

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 [micro sign]m absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

M. Richardson and R. Gaume, “Transparent ceramics for lasers-a game-changer,” Am. Ceram. Soc. Bull. 91, 30 (2012).

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Gaume, R. M.

S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
[Crossref]

Gemming, T.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

González Ureña, A.

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 831–838 (2001).
[Crossref]

Grimes, R.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Gruber, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
[Crossref]

Haile, S.

D. Shima and S. Haile, “The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate,” Solid State Ion. 97(1-4), 443–455 (1997).
[Crossref]

Hao, Q.

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

Hao, X.

X. Hao, J. Zhou, and S. An, “Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films,” J. Am. Ceram. Soc. 94(6), 1647–1650 (2011).
[Crossref]

X. Hao and J. Zhai, “Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric thin films grown on platinum-buffered silicon substrates,” J. Phys. D Appl. Phys. 40(23), 7447–7453 (2007).
[Crossref]

Harris, I.

J. Abell, I. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci. 9(4), 527–537 (1974).
[Crossref]

Häßler, W.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

He, Q.

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

He, Y.

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 [micro sign]m absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

Heitz, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
[Crossref]

Hermann, J.

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

Heron, J. T.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Holzapfel, B.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

Hong, W. T.

S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
[Crossref]

Huang, M.-L.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

Hutzler, T.

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

Ikesue, A.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid‐state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

Iwahara, H.

G. Ma, T. Shimura, and H. Iwahara, “Ionic conduction and nonstoichiometry in Ba x Ce 0.90 Y 0.10 O 3− α,” Solid State Ion. 110(1-2), 103–110 (1998).
[Crossref]

Ji, Z.

J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
[Crossref]

Jiang, B.

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

Jiye, W.

S. Shikao and W. Jiye, “Combustion synthesis of Eu 3+ activated Y 3 Al 5 O 12 phosphor nanoparticles,” J. Alloys Compd. 327(1-2), 82–86 (2001).
[Crossref]

Kagawa, Y.

A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans. 46(5), 996–1003 (2005).
[Crossref]

Kamata, K.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid‐state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

Kim, W.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Kimmel, A.

A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
[Crossref]

Klimke, J.

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

Krell, A.

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

Kupriyanov, M. F.

Z. Surowiak, M. F. Kupriyanov, A. E. Panich, and R. Skulski, “The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3,” J. Eur. Ceram. Soc. 21(15), 2783–2786 (2001).
[Crossref]

Laouar, A.

S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
[Crossref]

Lasheras, R. J.

R. J. Lasheras, C. Bello-Gálvez, and J. M. Anzano, “Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard,” Spectrochim. Acta B At. Spectrosc. 82, 65–70 (2013).
[Crossref]

Lauper, S.

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

Lee, Y.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

Lent, B.

J. Abell, I. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci. 9(4), 527–537 (1974).
[Crossref]

Levy, M.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Li, X.

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

Liu, B.-Q.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

Lu, C.-H.

C.-H. Lu and Y.-C. Chen, “Sintering and decomposition of ferroelectric layered perovskites,” J. Eur. Ceram. Soc. 19(16), 2909–2915 (1999).
[Crossref]

Ma, G.

J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
[Crossref]

G. Ma, T. Shimura, and H. Iwahara, “Ionic conduction and nonstoichiometry in Ba x Ce 0.90 Y 0.10 O 3− α,” Solid State Ion. 110(1-2), 103–110 (1998).
[Crossref]

Maître, A.

Man, Z.-Y.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

Mao, X.

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

Markosyan, A.

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 [micro sign]m absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

Martin, L. W.

E. Breckenfeld, Z. Chen, A. R. Damodaran, and L. W. Martin, “Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films,” ACS Appl. Mater. Interfaces 6(24), 22436–22444 (2014).
[Crossref] [PubMed]

McClellan, K.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Mckenna, K. P.

A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
[Crossref]

Mejía-Ospino, E.

H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
[Crossref]

Michel, A. P. M.

A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

Mihailescu, I. N.

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

Misra, R.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Morrison, R. J. S.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta B At. Spectrosc. 60(11), 1482–1485 (2005).
[Crossref]

Motto-Ros, V.

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
[Crossref]

Moyer, J. A.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Muller, D. A.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Mundy, J. A.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Negre, E.

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
[Crossref]

Okamura, S.

C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
[Crossref]

Panczer, G.

V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
[Crossref]

Panich, A. E.

Z. Surowiak, M. F. Kupriyanov, A. E. Panich, and R. Skulski, “The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3,” J. Eur. Ceram. Soc. 21(15), 2783–2786 (2001).
[Crossref]

Papaefthymiou, G. C.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

Park, T.-J.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

Patel, A.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Pelascini, F.

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
[Crossref]

Peña, D. Y.

H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
[Crossref]

Perner, O.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

Podowitz, S. R.

S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
[Crossref]

Popescu, A. C.

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

Poudel, B.

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

Rabinovitch, Y.

Ramaseder, N.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
[Crossref]

Ramo, D. M.

A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
[Crossref]

Ren, Z.

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

Reynaud, F.

Richardson, M.

M. Richardson and R. Gaume, “Transparent ceramics for lasers-a game-changer,” Am. Ceram. Soc. Bull. 91, 30 (2012).

Sadowski, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Sanghera, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Schiffer, P.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Schlom, D. G.

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Schultz, L.

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

Shaw, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Shikao, S.

S. Shikao and W. Jiye, “Combustion synthesis of Eu 3+ activated Y 3 Al 5 O 12 phosphor nanoparticles,” J. Alloys Compd. 327(1-2), 82–86 (2001).
[Crossref]

Shima, D.

D. Shima and S. Haile, “The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate,” Solid State Ion. 97(1-4), 443–455 (1997).
[Crossref]

Shimura, T.

G. Ma, T. Shimura, and H. Iwahara, “Ionic conduction and nonstoichiometry in Ba x Ce 0.90 Y 0.10 O 3− α,” Solid State Ion. 110(1-2), 103–110 (1998).
[Crossref]

Shiosaki, T.

C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
[Crossref]

Shluger, A. L.

A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
[Crossref]

Shoulders, W. T.

X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
[Crossref]

Skulski, R.

Z. Surowiak, M. F. Kupriyanov, A. E. Panich, and R. Skulski, “The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3,” J. Eur. Ceram. Soc. 21(15), 2783–2786 (2001).
[Crossref]

Socol, G.

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

Stanek, C.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Steere, D.

R. Gaume, D. Steere, and S. Sundaram, “Effect of nonstoichiometry on the terahertz absorption of Y 3 Al 5 O 12 optical ceramics,” J. Mater. Res. 29(19), 2338–2343 (2014).
[Crossref]

Strasser, H.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
[Crossref]

Sundaram, S.

R. Gaume, D. Steere, and S. Sundaram, “Effect of nonstoichiometry on the terahertz absorption of Y 3 Al 5 O 12 optical ceramics,” J. Mater. Res. 29(19), 2338–2343 (2014).
[Crossref]

Surowiak, Z.

Z. Surowiak, M. F. Kupriyanov, A. E. Panich, and R. Skulski, “The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3,” J. Eur. Ceram. Soc. 21(15), 2783–2786 (2001).
[Crossref]

Sushko, P. V.

A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
[Crossref]

Takeda, H.

C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
[Crossref]

Telle, H. H.

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 831–838 (2001).
[Crossref]

Tornero López, J.

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 831–838 (2001).
[Crossref]

Viescas, A. J.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

Villalobos, G.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Wang, C.-Y.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

Wang, D.

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

Wang, X.

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

Wong, S. S.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

Xi, J.

J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
[Crossref]

Xie, J.

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

Yaroshchyk, P.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta B At. Spectrosc. 60(11), 1482–1485 (2005).
[Crossref]

Yu, J.

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
[Crossref]

Zhai, J.

X. Hao and J. Zhai, “Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric thin films grown on platinum-buffered silicon substrates,” J. Phys. D Appl. Phys. 40(23), 7447–7453 (2007).
[Crossref]

Zhang, J.

J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
[Crossref]

Zhang, L.

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

Zhang, Z.-J.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

Zhao, J.-T.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

Zhou, H.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

Zhou, J.

X. Hao, J. Zhou, and S. An, “Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films,” J. Am. Ceram. Soc. 94(6), 1647–1650 (2011).
[Crossref]

Zhu, H.

J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
[Crossref]

Zhu, L.-L.

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

E. Breckenfeld, Z. Chen, A. R. Damodaran, and L. W. Martin, “Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films,” ACS Appl. Mater. Interfaces 6(24), 22436–22444 (2014).
[Crossref] [PubMed]

Am. Ceram. Soc. Bull. (1)

M. Richardson and R. Gaume, “Transparent ceramics for lasers-a game-changer,” Am. Ceram. Soc. Bull. 91, 30 (2012).

APL Mater. (1)

J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, “Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry,” APL Mater. 2(1), 012106 (2014).
[Crossref]

Appl. Phys. Lett. (2)

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93(19), 191902 (2008).
[Crossref]

Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, “Thermoelectric property studies on bulk TiOx with x from 1 to 2,” Appl. Phys. Lett. 91(5), 052505 (2007).
[Crossref]

Ceram. Int. (1)

X. Chen, S. Chen, P.-M. Clequin, W. T. Shoulders, and R. Gaume, “Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics,” Ceram. Int. 41(1), 755–760 (2015).
[Crossref]

Eur. Phys. J. D (1)

H. Estupiñán, D. Y. Peña, Y. O. García, R. Cabanzo, and E. Mejía-Ospino, “Stoichiometry analysis of titanium oxide coating by LIBS,” Eur. Phys. J. D 53(1), 69–73 (2009).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

L.-L. Zhu, Z.-J. Zhang, B.-Q. Liu, M.-L. Huang, C.-Y. Wang, H.-H. Chen, Z.-Y. Man, and J.-T. Zhao, “Preparation and characterization of non-stoichiometric yttrium aluminum garnet (YAG) with antisite defects as a potential scintillator,” IEEE Trans. Nucl. Sci. 61(1), 312–315 (2014).
[Crossref]

S. R. Podowitz, R. M. Gaume, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and Properties of Translucent SrI2 and Eu:SrI2 Scintillator Ceramics,” IEEE Trans. Nucl. Sci. 6, 3827 (2010).
[Crossref]

J. Alloys Compd. (1)

S. Shikao and W. Jiye, “Combustion synthesis of Eu 3+ activated Y 3 Al 5 O 12 phosphor nanoparticles,” J. Alloys Compd. 327(1-2), 82–86 (2001).
[Crossref]

J. Am. Ceram. Soc. (2)

X. Hao, J. Zhou, and S. An, “Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films,” J. Am. Ceram. Soc. 94(6), 1647–1650 (2011).
[Crossref]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid‐state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[Crossref]

J. Anal. At. Spectrom. (2)

J. Zhang, G. Ma, H. Zhu, J. Xi, and Z. Ji, “Accurate quantitative analysis of metal oxides by laser-induced breakdown spectroscopy with a fixed plasma temperature calibration method,” J. Anal. At. Spectrom. 27(11), 1903 (2012).
[Crossref]

E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and J. Yu, “On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass,” J. Anal. At. Spectrom. 30(2), 417–425 (2015).
[Crossref]

J. Appl. Phys. (3)

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 [micro sign]m absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

O. Perner, J. Eckert, W. Häßler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97(5), 056105 (2005).
[Crossref]

A. C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I. N. Mihailescu, and J. Hermann, “Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy,” J. Appl. Phys. 110(8), 083116 (2011).
[Crossref]

J. Eur. Ceram. Soc. (5)

C. Fujioka, R. Aoyagi, H. Takeda, S. Okamura, and T. Shiosaki, “Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics,” J. Eur. Ceram. Soc. 25(12), 2723–2726 (2005).
[Crossref]

Z. Surowiak, M. F. Kupriyanov, A. E. Panich, and R. Skulski, “The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3,” J. Eur. Ceram. Soc. 21(15), 2783–2786 (2001).
[Crossref]

X. Li, X. Mao, M. Feng, J. Xie, B. Jiang, and L. Zhang, “Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics,” J. Eur. Ceram. Soc. 36(16), 4181–4184 (2016).
[Crossref]

H. Eilers, “Fabrication, optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria,” J. Eur. Ceram. Soc. 27(16), 4711–4717 (2007).
[Crossref]

C.-H. Lu and Y.-C. Chen, “Sintering and decomposition of ferroelectric layered perovskites,” J. Eur. Ceram. Soc. 19(16), 2909–2915 (1999).
[Crossref]

J. Mater. Res. (1)

R. Gaume, D. Steere, and S. Sundaram, “Effect of nonstoichiometry on the terahertz absorption of Y 3 Al 5 O 12 optical ceramics,” J. Mater. Res. 29(19), 2338–2343 (2014).
[Crossref]

J. Mater. Sci. (1)

J. Abell, I. Harris, B. Cockayne, and B. Lent, “An investigation of phase stability in the Y2O3-Al2O3 system,” J. Mater. Sci. 9(4), 527–537 (1974).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. Hao and J. Zhai, “Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric thin films grown on platinum-buffered silicon substrates,” J. Phys. D Appl. Phys. 40(23), 7447–7453 (2007).
[Crossref]

Mater. Trans. (1)

A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans. 46(5), 996–1003 (2005).
[Crossref]

Materials (Basel) (1)

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic Laser Materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref]

Model. Simul. Mater. Sci. Eng. (1)

A. L. Shluger, K. P. Mckenna, P. V. Sushko, D. M. Ramo, and A. Kimmel, “Modelling of electron and hole trapping in oxides,” Model. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

Phys. Rev. B (1)

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, Y. Lee, H. Zhou, and S. S. Wong, “Composition-dependent magnetic properties of BiFeO 3-BaTiO 3 solid solution nanostructures,” Phys. Rev. B 82(2), 024431 (2010).
[Crossref]

Rev. Mod. Phys. (1)

R. D. Cowan and G. H. Dieke, “Self-Absorption of Spectrum Lines,” Rev. Mod. Phys. 20(2), 418–455 (1948).
[Crossref]

Solid State Ion. (2)

D. Shima and S. Haile, “The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate,” Solid State Ion. 97(1-4), 443–455 (1997).
[Crossref]

G. Ma, T. Shimura, and H. Iwahara, “Ionic conduction and nonstoichiometry in Ba x Ce 0.90 Y 0.10 O 3− α,” Solid State Ion. 110(1-2), 103–110 (1998).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (7)

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 831–838 (2001).
[Crossref]

R. J. Lasheras, C. Bello-Gálvez, and J. M. Anzano, “Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard,” Spectrochim. Acta B At. Spectrosc. 82, 65–70 (2013).
[Crossref]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta B At. Spectrosc. 60(11), 1482–1485 (2005).
[Crossref]

A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B At. Spectrosc. 63(9), 893–916 (2008).
[Crossref]

V. Motto-Ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, “Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 92, 60–69 (2014).
[Crossref]

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56(6), 685–693 (2001).
[Crossref]

Other (7)

R. Noll, Laser-Induced Breakdown Spectroscopy(Springer, 2012).

L. J. Radziemski and D. A. Cremers, Handbook of Laser Induced Breakdown Spectroscopy, (John Wiley & Sons, 2006).

V. V. Osiko, Growth and Defect Structures (Springer-Verlag, 1984).

K.-T. Tsen, M. Baudelet, J.-J. Song, M. Boueri, J. Yu, M. Betz, A. Y. Elezzabi, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).

Y. Wang, G. Baldoni, W. H. Rhodes, C. Brecher, A. Shah, U. Shirwadkar, J. Glodo, N. Cherepy, and S. Payne, “Transparent garnet ceramic scintillators for gamma-ray detection,” in SPIE Optical Engineering + Applications (International Society for Optics and Photonics 2012), pp. 850717–850717–850718.

J. McCloy and R. Tustison, Chemical Vapor Deposited Zinc Sulfide (SPIE Press, 2013).

L. B. Kong, Y. Huang, W. Que, T. Zhang, S. Li, J. Zhang, Z. Dong, and D. Tang, Transparent Ceramics (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of the LIBS setup used in this study.

Fig. 2
Fig. 2

Typical LIBS spectrum of an yttrium aluminum oxide sample, showing the Al+ and Y+ lines used for quantitative analysis. The other spectral features correspond to transitions in neutral and ionized Al and Y species.

Fig. 3
Fig. 3

Variation of the 281.61 nm aluminum and 278.52 nm yttrium line intensity ratios with sample composition. The arrow points to the sample with the stoichiometric garnet phase composition (YAG). The 3 domains (labeled group I, II and III) correspond to the visible appearance of the samples: transparent for group II and translucent for groups I and III. The changes in slope seen in the calibration curves between these groups reflect differences in laser-sample interaction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δr r = [ ( Δ I Al I Al ) 2 + ( Δ I Y I Y ) 2 ] 1 2

Metrics