Abstract

In this paper, the authors have investigated the thermal evolution of the forms, density, and electrical properties of the zinc interstitial (Zni) related donors in NH3-doped ZnO films via annealing the as-grown sample at different temperatures. The relatively high crystalline quality has eliminated the effect from grain boundaries and thus guaranteed the validity of the study. Generally, in the presence of nitrogen, the main forms of Zni are the Zni-NO complexes and the Zni small clusters. When increasing the annealing temperature to a moderate level (around 700 °C), the dissociation of the Zni and the NO in the Zni-NO complexes would make them partially desorb from the sample. Meanwhile, part of the isolated Zni created from the dissociation would aggregate to form the Zni small clusters (Zni-Zni). When increasing the annealing temperature to 900 °C, the desorption of the Zni-NO complex would continue, but the Zni small clusters are no longer thermally stable. They would decompose into isolated Zni atoms and finally desorb from the sample. As the Zni-NO complexes and the Zni small clusters are both shallow donors, their gradual desorption while increasing the annealing temperature results in a reduced compensation level. Furthermore, using the NH3 as the nitrogen doping source could bring in a complex shallow acceptor in the form of (NH4)Zn. Simultaneously, annealing at high temperatures (900 °C) may result in the clustering of zinc vacancies. Therefore, the current method proposed in this work could be a feasible path to enhancing the p-type doping efficiency in nitrogen-doped ZnO material.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fingerprints of donors and acceptors in high-quality NH3-doped ZnO films

Kun Tang, Ran Gu, Shunming Zhu, Zhonghua Xu, Yang Shen, Jiandong Ye, and Shulin Gu
Opt. Mater. Express 7(4) 1169-1179 (2017)

Investigation on the p-type formation mechanism of nitrogen ion implanted ZnO thin films induced by rapid thermal annealing

Zheng Huang, Haibo Ruan, Hong Zhang, Dongping Shi, Wanjun Li, Guoping Qin, Fang Wu, Liang Fang, and Chunyang Kong
Opt. Mater. Express 9(7) 3098-3108 (2019)

Identification and control of native defects in N-doped ZnO microrods

Zhengrong Yao, Kun Tang, Jiandong Ye, Zhonghua Xu, Shunming Zhu, and Shulin Gu
Opt. Mater. Express 6(9) 2847-2856 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
    [Crossref] [PubMed]
  2. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
    [Crossref]
  3. C. X. Shan, J. S. Liu, Y. J. Lu, B. H. Li, F. C. C. Ling, and D. Z. Shen, “p-type doping of MgZnO films and their applications in optoelectronic devices,” Opt. Lett. 40(13), 3041–3044 (2015).
    [Crossref] [PubMed]
  4. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
    [Crossref]
  5. J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
    [Crossref]
  6. M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
    [Crossref]
  7. K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
    [Crossref]
  8. F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
    [Crossref] [PubMed]
  9. A. Janotti and C. G. Van de Walle, “Hydrogen multicentre bonds,” Nat. Mater. 6(1), 44–47 (2007).
    [Crossref] [PubMed]
  10. S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
    [Crossref]
  11. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
    [Crossref]
  12. C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B 308–310, 899–903 (2001).
    [Crossref]
  13. R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
    [Crossref]
  14. M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
    [Crossref]
  15. P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
    [Crossref]
  16. D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
    [Crossref]
  17. D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
    [Crossref] [PubMed]
  18. Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
    [Crossref] [PubMed]
  19. M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
    [Crossref]
  20. W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
    [Crossref]
  21. K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
    [Crossref]
  22. K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
    [Crossref]
  23. H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
    [Crossref]
  24. K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
    [Crossref]
  25. K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
    [Crossref]
  26. K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
    [Crossref]
  27. S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
    [Crossref]
  28. J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
    [Crossref]
  29. Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
    [Crossref]
  30. K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
    [Crossref]
  31. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
    [Crossref]
  32. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
    [Crossref]
  33. J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
    [Crossref]
  34. L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
    [Crossref]
  35. J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
    [Crossref]
  36. F. Friedrich and N. H. Nickel, “Resonant Raman scattering in hydrogen and nitrogen doped ZnO,” Appl. Phys. Lett. 91(11), 111903 (2007).
    [Crossref]
  37. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
    [Crossref]
  38. K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
    [Crossref]
  39. C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
    [Crossref]
  40. X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
    [Crossref]
  41. J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
    [Crossref]
  42. B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
    [Crossref] [PubMed]
  43. W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
    [Crossref]
  44. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, “Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 36 Part 2 (11A), L1453–L1455 (1997).
    [Crossref]
  45. Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
    [Crossref]
  46. J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
    [Crossref]
  47. D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
    [Crossref]
  48. D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
    [Crossref]
  49. F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
    [Crossref]
  50. Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
    [Crossref]
  51. J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
    [Crossref]

2017 (1)

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

2016 (2)

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

2015 (4)

C. X. Shan, J. S. Liu, Y. J. Lu, B. H. Li, F. C. C. Ling, and D. Z. Shen, “p-type doping of MgZnO films and their applications in optoelectronic devices,” Opt. Lett. 40(13), 3041–3044 (2015).
[Crossref] [PubMed]

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

2014 (2)

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
[Crossref]

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

2013 (4)

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

2012 (1)

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

2011 (3)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

2010 (3)

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

2009 (5)

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

2008 (2)

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

2007 (5)

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

F. Friedrich and N. H. Nickel, “Resonant Raman scattering in hydrogen and nitrogen doped ZnO,” Appl. Phys. Lett. 91(11), 111903 (2007).
[Crossref]

F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref] [PubMed]

A. Janotti and C. G. Van de Walle, “Hydrogen multicentre bonds,” Nat. Mater. 6(1), 44–47 (2007).
[Crossref] [PubMed]

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

2006 (3)

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

2005 (3)

C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
[Crossref]

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

2004 (1)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

2003 (3)

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

2002 (1)

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

2001 (2)

C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B 308–310, 899–903 (2001).
[Crossref]

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

2000 (1)

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

1999 (1)

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

1998 (1)

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Akasaka, S.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Alarcon-Llado, E.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

Albe, K.

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

Alves, H.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Alves, H. R.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Amaike, H.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Artús, L.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

Asher, S.

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

Asher, S. E.

C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
[Crossref]

Ashkenov, N.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Bang, J.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
[Crossref]

Bertram, F.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Blart, E.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Blasing, J.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Boujtita, M.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Brillson, L. J.

Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Bundesmann, C.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Butz, T.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Callahan, M.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

Cario, L.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Ceder, G.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Chang, J.-H.

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

Chavillon, B.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Chen, H.

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

Chen, H.-H.

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

Chen, Q.

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Cheviré, F.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Chichibu, S. F.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Choy, S. F.

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Christen, J.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Coutts, T. J.

C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
[Crossref]

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

Cusco, R.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

Dadgar, A.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Diez, A.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Dong, Y. F.

Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Dworzak, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Eisermann, S.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Erhart, P.

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

Fang, L.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Farlow, G. C.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Fjellvag, H.

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

Forster, D.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Friedrich, F.

F. Friedrich and N. H. Nickel, “Resonant Raman scattering in hydrogen and nitrogen doped ZnO,” Appl. Phys. Lett. 91(11), 111903 (2007).
[Crossref]

Fujii, T.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Fuke, S.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Ganchenkova, M.

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

Gao, F.

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
[Crossref]

Gluba, M. A.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

Gonzalez-Diaz, G.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

Grundmann, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Gu, R

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Gu, R.

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

Gu, S. L.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Haboeck, U.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Hammarström, L.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Heinze, S.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Hempel, T.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Hemsky, J. W.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Hoffmann, A.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Hofmann, D. M.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Huang, G. J.

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

Huang, J.

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

Huang, J.-Y.

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

Huang, S.

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Huang, S. M

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Huang, S. M.

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

Janotti, A.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

A. Janotti and C. G. Van de Walle, “Hydrogen multicentre bonds,” Nat. Mater. 6(1), 44–47 (2007).
[Crossref] [PubMed]

Jenny, J.

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Jiang, J. H.

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

Jimenez, J.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

Jobic, S.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Jogai, B.

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Jokela, S. J.

M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

Jones, R.

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Kaczmarczyk, G.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Kaidashev, E. M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Karpensky, N.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

Kaschner, A.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Kawasaki, M.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Keyes, B.

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

Kilanski, L.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Kim, Y. S.

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

Kim, Y.-S.

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
[Crossref]

Kohan, A. F.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Koinuma, H.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Kong, C.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Kriegseis, W.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Krost, A.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Krtschil, A.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Kuznetsove, A. Y.

Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Lee, S. H.

C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
[Crossref]

Li, B. H.

Li, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Li, W.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Li, X. N.

C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
[Crossref]

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

Limpijumnong, S.

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Lin, Y.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Ling, F. C. C.

Liu, E. H.

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

Liu, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, J. G.

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

Liu, J. S.

Liu, S. M.

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Liu, W.

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Lo, G. Q.

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Look, D. C.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Lorenz, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Lu, J.

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

Lu, J.-G.

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

Lu, K. L.

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

Lu, Y. J.

Lynn, K. G.

F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref] [PubMed]

Lyons, J. L.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

Makino, T.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Mao, H. Y.

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Martil, I.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

McCluskey, M. D.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

Meyer, B. K.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Minegishi, T.

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

Monakhov, E.

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

Morgan, D.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Nakahara, K.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Nickel, N. H.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

F. Friedrich and N. H. Nickel, “Resonant Raman scattering in hydrogen and nitrogen doped ZnO,” Appl. Phys. Lett. 91(11), 111903 (2007).
[Crossref]

Nieminen, R. M.

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

Nishimoto, Y.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Nordlund, K.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Odobel, F.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Oh, D.-C.

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

Ohno, H.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Ohtani, K.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Ohtani, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Ohtomo, A.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Onuma, T.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Park, C. H.

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
[Crossref]

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

Park, S. H.

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

Pavindran, P.

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

Pellegrin, Y.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Perkins, C. L.

C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
[Crossref]

Qin, G.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Rauch, C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Ren, F. F.

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Renaud, A.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Reunchan, P.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Reynolds, D. C.

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Rodina, A. V.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Ruan, H.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Sasaki, A.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Schubert, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Segawa, Y.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Selim, F. A.

F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref] [PubMed]

Shan, C. X.

Shan, Z. P.

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Shen, D. Z.

Shi, Y.

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Sizelove, J. R.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Smeigh, A.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Solodovnikov, D.

F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref] [PubMed]

Spemann, D.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Strassburg, M.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Straßburg, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Sumiya, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Sun, L. Z.

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

Sun, X. W.

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Sun, Y.-Y.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

Svensson, B. G.

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Taishi, T.

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

Takamizu, D.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Takasu, H.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Tamura, K.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Tanabe, T.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Tang, K

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Tang, K.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

Tarun, M. C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

Teo, K. L.

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

Tessier, F.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

Thomsen, C.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Tiefenau, S.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Tripathy, S.

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

Tsukazaki, A.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

Tuomisto, F.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Van de Walle, C. G.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

A. Janotti and C. G. Van de Walle, “Hydrogen multicentre bonds,” Nat. Mater. 6(1), 44–47 (2007).
[Crossref] [PubMed]

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B 308–310, 899–903 (2001).
[Crossref]

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

Van Nostrand, J. E.

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Vidya, R.

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

Wagner, M. R.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Wang, B.

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Wang, J. B.

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

Wang, L.

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

Weber, M. H.

F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref] [PubMed]

Wei, S.-H.

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

West, D.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

Witte, H.

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Wu, F.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Wu, K. P.

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Wu, Y. X.

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Xu, M. X.

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

Xu, Z. H.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

Yao, T.

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

Yao, Z.

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Yao, Z. R

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Yao, Z. R.

Ye, J. D.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Ye, L.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Ye, Y. D.

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Ye, Z.

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

Ye, Z.-Z.

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

Yonenaga, I.

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

Yu, H. Q.

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Yuji, H.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Zafar Iqbal, M.

M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

Zeuner, A.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Zhang, H.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Zhang, P.

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Zhang, R.

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Zhang, S.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

Zhang, S. B.

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
[Crossref]

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Zhang, Y.

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

Zhang, Y.-Z.

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

Zhao, B.

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

Zhao, B.-H.

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zheng, Y.

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Zheng, Y. D

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Zheng, Y. D.

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

Zhong, X. L.

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

Zhou, M. R.

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

Zhou, W.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhou, Y. C.

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

Zhu, J. M.

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

Zhu, S.

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Zhu, S. M

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

Zhu, S. M.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

AIP Adv. (1)

M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

Appl. Phys. Lett. (16)

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, W. Liu, J. D. Ye, J. M. Zhu, R. Zhang, Y. D. Zheng, and X. W. Sun, “Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 93(13), 132107 (2008).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, S. M. Zhu, R. Zhang, Y. Shi, and Y. D. Zheng, “Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films,” Appl. Phys. Lett. 102(22), 221905 (2013).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, and E. H. Liu, “Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles,” Appl. Phys. Lett. 88(25), 252502 (2006).
[Crossref]

L. Artús, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, and M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO,” Appl. Phys. Lett. 90(18), 181911 (2007).
[Crossref]

J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, “Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO,” Appl. Phys. Lett. 94(1), 011913 (2009).
[Crossref]

F. Friedrich and N. H. Nickel, “Resonant Raman scattering in hydrogen and nitrogen doped ZnO,” Appl. Phys. Lett. 91(11), 111903 (2007).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films,” Appl. Phys. Lett. 88(10), 101905 (2006).
[Crossref]

X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S.-H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett. 86(12), 122107 (2005).
[Crossref]

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(25), 252101 (2014).
[Crossref]

J. Alloys Compd. (1)

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S. Jobic, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (4)

W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys. 97(3), 034907 (2005).
[Crossref]

M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

J. Cryst. Growth (3)

Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, “Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering,” J. Cryst. Growth 253(1–4), 258–264 (2003).
[Crossref]

S. H. Park, T. Minegishi, D.-C. Oh, J.-H. Chang, T. Yao, T. Taishi, and I. Yonenaga, “p-type conductivity control of heteroepitaxially grown ZnO films by N and Te cooping and thermal annealing,” J. Cryst. Growth 363, 190–194 (2013).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

J. Magn. Magn. Mater. (1)

K. P. Wu, J. H. Jiang, K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, K. L. Lu, M. R. Zhou, M. X. Xu, R. Zhang, and Y. D. Zheng, “Influences of the type of dopant and substrate on ferromagnetism in ZnO:Mn,” J. Magn. Magn. Mater. 355, 51–57 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

J. Mater. Res. (2)

H. Y. Mao, S. L. Gu, J. D. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, Y. Zheng, K Tang, R Gu, S. M Zhu, S. M Huang, Z. R Yao, and Y. D Zheng, “Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors,” J. Mater. Res. 30(07), 935–945 (2015).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

J. Semicond. (1)

K. Tang, S. L. Gu, J. D. Ye, S. M. Zhu, R. Zhang, and Y. D. Zheng, “High-quality ZnO growth, doping, and polarization effect,” J. Semicond. 37(3), 031001 (2016).
[Crossref]

Mater. Lett. (1)

J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Mater. Lett. 57(22–23), 3311–3314 (2003).
[Crossref]

Nat. Mater. (2)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2004).
[Crossref]

A. Janotti and C. G. Van de Walle, “Hydrogen multicentre bonds,” Nat. Mater. 6(1), 44–47 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (4)

Y. F. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsove, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

R. Vidya, P. Pavindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B 83(4), 045206 (2011).
[Crossref]

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[Crossref]

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

Phys. Rev. Lett. (4)

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref] [PubMed]

Physica B (1)

C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B 308–310, 899–903 (2001).
[Crossref]

Proc. SPIE (1)

S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Blasing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, “Metalorganic vapor phase epitaxy of ZnO: toward p-type conductivity,” Proc. SPIE 6474, 647406 (2007).
[Crossref]

Solid State Commun. (1)

D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO,” Solid State Commun. 106(10), 701–704 (1998).
[Crossref]

Other (3)

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, “Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 36 Part 2 (11A), L1453–L1455 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The AFM images of the nitrogen-doped ZnO films grown on (a) the bare sapphire, and (b) the ZnO template. The area of the scan is 2.5 × 2.5 μm2. The z-scale bar is 100 nm. (c) The ZnO (0002) XRC of the as-grown NH3-doped sample and the samples annealed ranging from 600 to 900 °C. (d) The extracted FWHM values of the XRC for all the samples.
Fig. 2
Fig. 2 (a) The Raman backscattering spectra (50-800 cm−1) of the as-grown NH3-doped sample and the samples annealed ranging from 600 to 900 °C. The extracted integral intensity of (b) the E2(L) and E2(H) modes, and (c) the four AMs for all the samples.
Fig. 3
Fig. 3 The N 1s XPS fine scan (390 – 406 eV) of (a) the as-grown NH3-doped sample, (b) the 600 °C-annealed sample, and (c) the 900 °C-annealed sample. (d) The Zn L3M45M45 XPS fine scan (480 – 525 eV) for the as-grown, 600 °C-annealed, and 900 °C-annealed samples. The inset shows the intensity ratio between the Zni-related peak and the Zn L3M45M45 peak.
Fig. 4
Fig. 4 (a) The C-V curves for the as-grown NH3-doped sample and the samples annealed ranging from 600 to 900 °C. The up-right inset shows the C-V curves for a p-type silicon wafer and the n-type ZnO template for assisting the judgement of the conduction type of the samples. The up-left inset draws the schematic for the C-V measurement setup. (b) The calculated net doping concentration values [(ND-NA) (for donor majority) and (NA-ND) (for acceptor majority)] for all the samples.
Fig. 5
Fig. 5 The schematic summary of the thermal evolution of the Zni-related donors in nitrogen-doped ZnO film grown on the ZnO template.

Metrics