Abstract

We have studied light induced processes in nanocolloids and composite materials containing ordered and disordered aggregates of plasmonic nanoparticles accompanied by their strong heating. A universal comprehensive physical model that combines mechanical, electrodynamical, and thermal interactions at nanoscale has been developed as a tool for investigations. This model was used to gain deep insight on phenomena that take place in nanoparticle aggregates under high-intensity pulsed laser radiation resulting in the suppression of nanoparticle resonant properties. Verification of the model was carried out with single colloidal Au and Ag nanoparticles and their aggregates.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

31 January 2017: A correction was made to the author listing.


OSA Recommended Articles
Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state

V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov
Opt. Express 24(23) 26851-26856 (2016)

Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation

Yuri A. Avetisyan, Alexander N. Yakunin, and Valery V. Tuchin
Appl. Opt. 51(10) C88-C94 (2012)

High-order nonlinearities of aqueous colloids containing silver nanoparticles

E. L. Falcão-Filho, Cid B. de Araújo, and J. J. Rodrigues, Jr.
J. Opt. Soc. Am. B 24(12) 2948-2956 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
    [Crossref]
  3. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004).
    [Crossref]
  4. A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotrasmission lines,” Phys. Rev. B 74, 205436 (2006).
    [Crossref]
  5. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
    [Crossref] [PubMed]
  6. M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
    [Crossref] [PubMed]
  7. A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
    [Crossref] [PubMed]
  8. G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
    [Crossref] [PubMed]
  9. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
    [Crossref] [PubMed]
  10. N. S. Abadeer and C. J. Murphy, “Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles,” The Journal of Physical Chemistry C 120, 4691–4716 (2016).
    [Crossref]
  11. J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics - turning loss into gain,” Science 351, 334–335 (2016).
    [Crossref] [PubMed]
  12. L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
    [Crossref]
  13. S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
    [Crossref]
  14. E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
    [Crossref] [PubMed]
  15. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
    [Crossref] [PubMed]
  16. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Materials Today 18, 227–237 (2015).
    [Crossref]
  17. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature nanotechnology 10, 25–34 (2015).
    [Crossref] [PubMed]
  18. G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
    [Crossref] [PubMed]
  19. A. D. Phan, T.-L. Phan, and L. M. Woods, “Near-field heat transfer between gold nanoparticle arrays,” Journal of Applied Physics 114, 214306 (2013).
    [Crossref]
  20. P. Berto, M. S. A. Mohamed, H. Rigneault, and G. Baffou, “Time-harmonic optical heating of plasmonic nanoparticles,” Phys. Rev. B 90, 035439 (2014).
    [Crossref]
  21. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
    [Crossref]
  22. A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163–173 (2009).
    [Crossref]
  23. B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
    [Crossref]
  24. A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
    [Crossref]
  25. V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov, “Suppression of surface plasmon resonance in au nanoparticles upon transition to the liquid state,” Opt. Express 24, 26851–26856 (2016).
    [Crossref] [PubMed]
  26. A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
    [Crossref]
  27. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
    [Crossref]
  28. V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
    [Crossref]
  29. A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).
  30. A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: Effect of pulse duration,” Plasmonics 11, 403–410 (2015).
    [Crossref]
  31. A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields,” Chin. Phys. B 24, 47804 (2015).
    [Crossref]
  32. A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and S. P. Polyutov, “Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields,” Chin. Phys. B 25, 117806 (2016).
    [Crossref]
  33. Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Physica A 241, 231–235 (1997).
    [Crossref]
  34. R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).
  35. S. V. Karpov, M. K. Kodirov, A. I. Ryasiyanskiy, and V. V. Slabko, “Nonlinear refraction of silver hydrosoles during their aggregation,” Quantum Electronics 31, 904–908 (2001).
    [Crossref]
  36. N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
    [Crossref]
  37. F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).
  38. S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).
  39. V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
    [Crossref]
  40. S. V. Karpov, A. K. Popov, and V. V. Slabko, “Photochromic reactions in silver nanocomposites with a fractal structure and their comparative characteristics,” Technical Physics 48, 749–756 (2003).
    [Crossref]
  41. Y. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988).
  42. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).
  43. L. D. Landau and E. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Oxford England Burlington, MA, 1986).
  44. S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
    [Crossref]
  45. F. Claro and R. Rojas, “Novel laser induced interaction profiles in clusters of mesoscopic particles,” Appl. Phys. Lett. 65, 2743–2745 (1994).
    [Crossref]
  46. V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
    [Crossref]
  47. G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A 42, 275203 (2009).
    [Crossref]
  48. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).
  49. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  50. V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
    [Crossref]
  51. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
    [Crossref]
  52. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
    [Crossref]
  53. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
    [Crossref]
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  55. J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
    [Crossref]
  56. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1986), 6th ed.
  57. M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
    [Crossref]
  58. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
    [Crossref]
  59. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
    [Crossref]
  60. Y. A. Frenkel, The Kinetic Theory of Liquids (Nauka, Moscow, 1975).
  61. O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
    [Crossref]
  62. D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
    [Crossref]
  63. J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
    [Crossref]
  64. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  65. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75, 085426 (2007).
    [Crossref]
  66. I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
    [Crossref]
  67. I. L. Rasskazov, S. V. Karpov, G. Panasyuk, and V. A. Markel, “Overcoming the adverse effects of substrate on the waveguiding properties of plasmonic nanoparticle chains,” J. Appl. Phys. 119, 043101 (2016).
    [Crossref]
  68. I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Nondecaying surface plasmon polaritons in linear chains of silver nanospheroids,” Opt. Lett. 38, 4743–4746 (2013).
    [Crossref] [PubMed]

2016 (6)

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and S. P. Polyutov, “Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields,” Chin. Phys. B 25, 117806 (2016).
[Crossref]

I. L. Rasskazov, S. V. Karpov, G. Panasyuk, and V. A. Markel, “Overcoming the adverse effects of substrate on the waveguiding properties of plasmonic nanoparticle chains,” J. Appl. Phys. 119, 043101 (2016).
[Crossref]

N. S. Abadeer and C. J. Murphy, “Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles,” The Journal of Physical Chemistry C 120, 4691–4716 (2016).
[Crossref]

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics - turning loss into gain,” Science 351, 334–335 (2016).
[Crossref] [PubMed]

V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov, “Suppression of surface plasmon resonance in au nanoparticles upon transition to the liquid state,” Opt. Express 24, 26851–26856 (2016).
[Crossref] [PubMed]

2015 (4)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Materials Today 18, 227–237 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature nanotechnology 10, 25–34 (2015).
[Crossref] [PubMed]

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: Effect of pulse duration,” Plasmonics 11, 403–410 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields,” Chin. Phys. B 24, 47804 (2015).
[Crossref]

2014 (5)

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

P. Berto, M. S. A. Mohamed, H. Rigneault, and G. Baffou, “Time-harmonic optical heating of plasmonic nanoparticles,” Phys. Rev. B 90, 035439 (2014).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

2013 (7)

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Nondecaying surface plasmon polaritons in linear chains of silver nanospheroids,” Opt. Lett. 38, 4743–4746 (2013).
[Crossref] [PubMed]

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

A. D. Phan, T.-L. Phan, and L. M. Woods, “Near-field heat transfer between gold nanoparticle arrays,” Journal of Applied Physics 114, 214306 (2013).
[Crossref]

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

2012 (3)

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
[Crossref]

2010 (1)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

2009 (3)

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163–173 (2009).
[Crossref]

S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
[Crossref]

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A 42, 275203 (2009).
[Crossref]

2008 (1)

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

2007 (2)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75, 085426 (2007).
[Crossref]

2006 (1)

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotrasmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

2004 (1)

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004).
[Crossref]

2003 (3)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Photochromic reactions in silver nanocomposites with a fractal structure and their comparative characteristics,” Technical Physics 48, 749–756 (2003).
[Crossref]

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

2002 (1)

V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
[Crossref]

2001 (2)

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).

S. V. Karpov, M. K. Kodirov, A. I. Ryasiyanskiy, and V. V. Slabko, “Nonlinear refraction of silver hydrosoles during their aggregation,” Quantum Electronics 31, 904–908 (2001).
[Crossref]

2000 (1)

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

1999 (1)

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

1998 (1)

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

1997 (1)

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Physica A 241, 231–235 (1997).
[Crossref]

1996 (2)

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

1994 (1)

F. Claro and R. Rojas, “Novel laser induced interaction profiles in clusters of mesoscopic particles,” Appl. Phys. Lett. 65, 2743–2745 (1994).
[Crossref]

1992 (1)

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

1991 (2)

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

1990 (3)

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

1988 (2)

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1972 (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1969 (2)

J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
[Crossref]

J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
[Crossref]

1961 (1)

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
[Crossref]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Abadeer, N. S.

N. S. Abadeer and C. J. Murphy, “Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles,” The Journal of Physical Chemistry C 120, 4691–4716 (2016).
[Crossref]

Ågren, H.

Alabastri, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Alberktsen, O.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

Alu, A.

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotrasmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

Anderton, C.

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Andres, R. P.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

Angelis, F.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Apuzzo, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Armstrong, R. L.

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

Baffou, G.

P. Berto, M. S. A. Mohamed, H. Rigneault, and G. Baffou, “Time-harmonic optical heating of plasmonic nanoparticles,” Phys. Rev. B 90, 035439 (2014).
[Crossref]

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

Bankson, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Barash, Y. S.

Y. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988).

Berto, P.

P. Berto, M. S. A. Mohamed, H. Rigneault, and G. Baffou, “Time-harmonic optical heating of plasmonic nanoparticles,” Phys. Rev. B 90, 035439 (2014).
[Crossref]

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Blaize, S.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
[Crossref]

Boltasseva, A.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
[Crossref]

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics - turning loss into gain,” Science 351, 334–335 (2016).
[Crossref] [PubMed]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Materials Today 18, 227–237 (2015).
[Crossref]

Bondarchuk, I.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature nanotechnology 10, 25–34 (2015).
[Crossref] [PubMed]

Butenko, A. V.

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

Castro, T.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Chen, L.-C.

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

Chen, M.-M.

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

Choi, E.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chubakov, P. A.

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

Claro, F.

F. Claro and R. Rojas, “Novel laser induced interaction profiles in clusters of mesoscopic particles,” Appl. Phys. Lett. 65, 2743–2745 (1994).
[Crossref]

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Dalacu, D.

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

Danilova, Y. E.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Physica A 241, 231–235 (1997).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

Das, G.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Dereux, A.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004).
[Crossref]

Dmitruk, I.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
[Crossref]

Drachev, V. P.

V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
[Crossref]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Engheta, N.

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotrasmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

Ershov, A. E.

V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov, “Suppression of surface plasmon resonance in au nanoparticles upon transition to the liquid state,” Opt. Express 24, 26851–26856 (2016).
[Crossref] [PubMed]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and S. P. Polyutov, “Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields,” Chin. Phys. B 25, 117806 (2016).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: Effect of pulse duration,” Plasmonics 11, 403–410 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields,” Chin. Phys. B 24, 47804 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

Fabrizio, E.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Frenkel, Y. A.

Y. A. Frenkel, The Kinetic Theory of Liquids (Nauka, Moscow, 1975).

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).

Gavrilyuk, A. P.

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and S. P. Polyutov, “Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields,” Chin. Phys. B 25, 117806 (2016).
[Crossref]

V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov, “Suppression of surface plasmon resonance in au nanoparticles upon transition to the liquid state,” Opt. Express 24, 26851–26856 (2016).
[Crossref] [PubMed]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields,” Chin. Phys. B 24, 47804 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: Effect of pulse duration,” Plasmonics 11, 403–410 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163–173 (2009).
[Crossref]

S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
[Crossref]

Geim, A. K.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

George, T. F.

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

Gerasimov, V. S.

V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov, “Suppression of surface plasmon resonance in au nanoparticles upon transition to the liquid state,” Opt. Express 24, 26851–26856 (2016).
[Crossref] [PubMed]

S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
[Crossref]

Girard, C.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004).
[Crossref]

Giugni, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

Grachev, A. S.

S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
[Crossref]

Gray, S.

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Guler, U.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Materials Today 18, 227–237 (2015).
[Crossref]

Gurin, V.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature nanotechnology 10, 25–34 (2015).
[Crossref] [PubMed]

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

Hashimoto, S.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

Hazle, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Hirsch, L.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
[Crossref]

Isaev, I. L.

S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
[Crossref]

Israelachvili, J. N.

J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Kamalov, S. R.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).

Karpov, S. V.

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and S. P. Polyutov, “Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields,” Chin. Phys. B 25, 117806 (2016).
[Crossref]

I. L. Rasskazov, S. V. Karpov, G. Panasyuk, and V. A. Markel, “Overcoming the adverse effects of substrate on the waveguiding properties of plasmonic nanoparticle chains,” J. Appl. Phys. 119, 043101 (2016).
[Crossref]

V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov, “Suppression of surface plasmon resonance in au nanoparticles upon transition to the liquid state,” Opt. Express 24, 26851–26856 (2016).
[Crossref] [PubMed]

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: Effect of pulse duration,” Plasmonics 11, 403–410 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields,” Chin. Phys. B 24, 47804 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Nondecaying surface plasmon polaritons in linear chains of silver nanospheroids,” Opt. Lett. 38, 4743–4746 (2013).
[Crossref] [PubMed]

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163–173 (2009).
[Crossref]

S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
[Crossref]

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Photochromic reactions in silver nanocomposites with a fractal structure and their comparative characteristics,” Technical Physics 48, 749–756 (2003).
[Crossref]

S. V. Karpov, M. K. Kodirov, A. I. Ryasiyanskiy, and V. V. Slabko, “Nonlinear refraction of silver hydrosoles during their aggregation,” Quantum Electronics 31, 904–908 (2001).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Khaliullin, E. N.

V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
[Crossref]

Khokhlov, A. R.

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

Kildishev, A. V.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
[Crossref]

Kim, W.

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Kittel, C.

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1986), 6th ed.

Kivshar, Y. S.

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
[Crossref]

Kodirov, M. K.

S. V. Karpov, M. K. Kodirov, A. I. Ryasiyanskiy, and V. V. Slabko, “Nonlinear refraction of silver hydrosoles during their aggregation,” Quantum Electronics 31, 904–908 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

Kotko, A.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
[Crossref]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau and E. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Oxford England Burlington, MA, 1986).

Lapotko, D. O.

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Lepeshkin, N. N.

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Physica A 241, 231–235 (1997).
[Crossref]

Li, G.

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

Li, X.

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

Liberale, C.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Lifshitz, E.

L. D. Landau and E. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Oxford England Burlington, MA, 1986).

Lourtioz, J.-M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
[Crossref]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Maria, I.

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Markel, V. A.

I. L. Rasskazov, S. V. Karpov, G. Panasyuk, and V. A. Markel, “Overcoming the adverse effects of substrate on the waveguiding properties of plasmonic nanoparticle chains,” J. Appl. Phys. 119, 043101 (2016).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Nondecaying surface plasmon polaritons in linear chains of silver nanospheroids,” Opt. Lett. 38, 4743–4746 (2013).
[Crossref] [PubMed]

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A 42, 275203 (2009).
[Crossref]

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75, 085426 (2007).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

Martinu, L.

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

Miller, J. C.

J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
[Crossref]

J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
[Crossref]

Miroshnichenko, A. E.

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
[Crossref]

Mohamed, M. S. A.

P. Berto, M. S. A. Mohamed, H. Rigneault, and G. Baffou, “Time-harmonic optical heating of plasmonic nanoparticles,” Phys. Rev. B 90, 035439 (2014).
[Crossref]

Monneret, S.

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

Muratov, L. S.

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

Murphy, C. J.

N. S. Abadeer and C. J. Murphy, “Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles,” The Journal of Physical Chemistry C 120, 4691–4716 (2016).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Ndukaife, J. C.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics - turning loss into gain,” Science 351, 334–335 (2016).
[Crossref] [PubMed]

Nielsen, M. G.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature nanotechnology 10, 25–34 (2015).
[Crossref] [PubMed]

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Nuzzo, R.

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Orlova, N. A.

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

Otter, M.

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
[Crossref]

Panasyuk, G.

I. L. Rasskazov, S. V. Karpov, G. Panasyuk, and V. A. Markel, “Overcoming the adverse effects of substrate on the waveguiding properties of plasmonic nanoparticle chains,” J. Appl. Phys. 119, 043101 (2016).
[Crossref]

Panasyuk, G. Y.

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A 42, 275203 (2009).
[Crossref]

Perminov, S. V.

V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
[Crossref]

Phan, A. D.

A. D. Phan, T.-L. Phan, and L. M. Woods, “Near-field heat transfer between gold nanoparticle arrays,” Journal of Applied Physics 114, 214306 (2013).
[Crossref]

Phan, T.-L.

A. D. Phan, T.-L. Phan, and L. M. Woods, “Near-field heat transfer between gold nanoparticle arrays,” Journal of Applied Physics 114, 214306 (2013).
[Crossref]

Plekhanov, A. I.

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

Polleux, J.

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

Polyutov, S. P.

V. S. Gerasimov, A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, H. Ågren, and S. P. Polyutov, “Suppression of surface plasmon resonance in au nanoparticles upon transition to the liquid state,” Opt. Express 24, 26851–26856 (2016).
[Crossref] [PubMed]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and S. P. Polyutov, “Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields,” Chin. Phys. B 25, 117806 (2016).
[Crossref]

Popov, A. K.

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Photochromic reactions in silver nanocomposites with a fractal structure and their comparative characteristics,” Technical Physics 48, 749–756 (2003).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Pors, A.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

Price, R.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Quidant, R.

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004).
[Crossref]

Radko, I. P.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

Rasskazov, I. L.

I. L. Rasskazov, S. V. Karpov, G. Panasyuk, and V. A. Markel, “Overcoming the adverse effects of substrate on the waveguiding properties of plasmonic nanoparticle chains,” J. Appl. Phys. 119, 043101 (2016).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Nondecaying surface plasmon polaritons in linear chains of silver nanospheroids,” Opt. Lett. 38, 4743–4746 (2013).
[Crossref] [PubMed]

Rautian, S. G.

V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Physica A 241, 231–235 (1997).
[Crossref]

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Reddy, H.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
[Crossref]

Reifenberger, R.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

Ren, X.

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

Requicha, A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

Rigneault, H.

P. Berto, M. S. A. Mohamed, H. Rigneault, and G. Baffou, “Time-harmonic optical heating of plasmonic nanoparticles,” Phys. Rev. B 90, 035439 (2014).
[Crossref]

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

Rivera, B.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Rogers, J.

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Rojas, R.

F. Claro and R. Rojas, “Novel laser induced interaction profiles in clusters of mesoscopic particles,” Appl. Phys. Lett. 65, 2743–2745 (1994).
[Crossref]

Ryasiyanskiy, A. I.

S. V. Karpov, M. K. Kodirov, A. I. Ryasiyanskiy, and V. V. Slabko, “Nonlinear refraction of silver hydrosoles during their aggregation,” Quantum Electronics 31, 904–908 (2001).
[Crossref]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).

Safonov, V. P.

V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
[Crossref]

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Physica A 241, 231–235 (1997).
[Crossref]

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Sarychev, A. K.

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75, 085426 (2007).
[Crossref]

Sawant, R. R.

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Schotland, J. C.

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A 42, 275203 (2009).
[Crossref]

Semina, P. N.

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields,” Chin. Phys. B 24, 47804 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

Sershen, S.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Shalaev, V. M.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics - turning loss into gain,” Science 351, 334–335 (2016).
[Crossref] [PubMed]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Materials Today 18, 227–237 (2015).
[Crossref]

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Shelkovnikov, V. V.

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

Shtokman, M. I.

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Slabko, V. V.

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Photochromic reactions in silver nanocomposites with a fractal structure and their comparative characteristics,” Technical Physics 48, 749–756 (2003).
[Crossref]

S. V. Karpov, M. K. Kodirov, A. I. Ryasiyanskiy, and V. V. Slabko, “Nonlinear refraction of silver hydrosoles during their aggregation,” Quantum Electronics 31, 904–908 (2001).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Stafford, R.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Stewart, M.

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Stockman, M. I.

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

Thompson, L.

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Toma, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Torchilin, V. P.

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

Tribelsky, M. I.

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
[Crossref]

Tuccio, S.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Ureña, E. B.

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

Usmanov, T. J.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).

Uwada, T.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Weeber, J.-C.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004).
[Crossref]

Werner, D.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

West, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

White, C. W.

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

Willaten, M.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

Woods, L. M.

A. D. Phan, T.-L. Phan, and L. M. Woods, “Near-field heat transfer between gold nanoparticle arrays,” Journal of Applied Physics 114, 214306 (2013).
[Crossref]

Wu, X.

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

Xiong, X.-L.

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

Yang, M.

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

Yeshchenko, O.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
[Crossref]

Zaccaria, R.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Zhu, J. G.

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

Zhur, R. A.

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

Zhuravlev, F. A.

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

ACS Nano (1)

G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref] [PubMed]

Appl. Phys. B (2)

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163–173 (2009).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

Appl. Phys. Lett. (2)

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

F. Claro and R. Rojas, “Novel laser induced interaction profiles in clusters of mesoscopic particles,” Appl. Phys. Lett. 65, 2743–2745 (1994).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Chem. Rev. (1)

M. Stewart, C. Anderton, L. Thompson, I. Maria, S. Gray, J. Rogers, and R. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Chin. Phys. B (2)

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields,” Chin. Phys. B 24, 47804 (2015).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and S. P. Polyutov, “Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields,” Chin. Phys. B 25, 117806 (2016).
[Crossref]

Colloid J. (1)

S. V. Karpov, I. L. Isaev, A. P. Gavrilyuk, V. S. Gerasimov, and A. S. Grachev, “General principles of the crystallization of nanostructured disperse systems,” Colloid J. 71, 313–328 (2009).
[Crossref]

J. Appl. Phys. (1)

I. L. Rasskazov, S. V. Karpov, G. Panasyuk, and V. A. Markel, “Overcoming the adverse effects of substrate on the waveguiding properties of plasmonic nanoparticle chains,” J. Appl. Phys. 119, 043101 (2016).
[Crossref]

J. Exp. Theor. Phys. (1)

V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, and E. N. Khaliullin, “Polarization effects in silver nanoaggregates caused by local and nonlocal nonlinear-optical responses,” J. Exp. Theor. Phys. 95, 901–915 (2002).
[Crossref]

J. Nonlinear Opt. Phys. & Materials (1)

N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zhur, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. & Materials 8, 191 (1999).
[Crossref]

J. Phys. A (1)

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A 42, 275203 (2009).
[Crossref]

JETP Lett. (2)

F. A. Zhuravlev, N. A. Orlova, V. V. Shelkovnikov, A. I. Plekhanov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear susceptibility of thin films with (molecular j-aggregate)-(metal cluster) complexes,” JETP Lett. 56, 264–267 (1992).

S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–573 (1988).

Journal of Applied Physics (1)

A. D. Phan, T.-L. Phan, and L. M. Woods, “Near-field heat transfer between gold nanoparticle arrays,” Journal of Applied Physics 114, 214306 (2013).
[Crossref]

Journal of Photochemistry and Photobiology C: Photochemistry Reviews (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

Materials (1)

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Materials Today (1)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Materials Today 18, 227–237 (2015).
[Crossref]

Nano Letters (2)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willaten, and O. Alberktsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Letters 10, 4571–4577 (2010).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Letters 12, 1032–1037 (2012).
[Crossref] [PubMed]

Nano Today (1)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

Nature Materials (2)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nature Materials 12, 304–309 (2013).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Materials 2, 229–232 (2003).
[Crossref]

Nature medicine (1)

E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P. Torchilin, and D. O. Lapotko, “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20, 778–784 (2014).
[Crossref] [PubMed]

Nature nanotechnology (2)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature nanotechnology 10, 25–34 (2015).
[Crossref] [PubMed]

New Journal of Physics (1)

B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S. Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of plasmonic nanoparticles,” New Journal of Physics 14, 093022 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optical Materials Express (1)

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Optical Materials Express 6, 2776 (2016).
[Crossref]

Philosophical Magazine (2)

J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
[Crossref]

J. C. Miller, “Optical properties of liquid metals at high temperatures,” Philosophical Magazine 20, 1115–1132 (1969).
[Crossref]

Phys. Rev. B (13)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75, 085426 (2007).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004).
[Crossref]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotrasmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

P. Berto, M. S. A. Mohamed, H. Rigneault, and G. Baffou, “Time-harmonic optical heating of plasmonic nanoparticles,” Phys. Rev. B 90, 035439 (2014).
[Crossref]

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometersized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Phys. Rev. Lett. (1)

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[Crossref]

Physica A (1)

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Physica A 241, 231–235 (1997).
[Crossref]

Physica D (1)

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. J. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” Physica D 34, 1602 (2001).

Plasmonics (1)

A. E. Ershov, A. P. Gavrilyuk, and S. V. Karpov, “Plasmonic nanoparticle aggregates in high-intensity laser fields: Effect of pulse duration,” Plasmonics 11, 403–410 (2015).
[Crossref]

Proceedings of the National Academy of Sciences (1)

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. J. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences 100, 13549–13554 (2003).
[Crossref]

Quantum Electronics (1)

S. V. Karpov, M. K. Kodirov, A. I. Ryasiyanskiy, and V. V. Slabko, “Nonlinear refraction of silver hydrosoles during their aggregation,” Quantum Electronics 31, 904–908 (2001).
[Crossref]

Science (1)

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics - turning loss into gain,” Science 351, 334–335 (2016).
[Crossref] [PubMed]

Sensors (1)

G. Li, X. Li, M. Yang, M.-M. Chen, L.-C. Chen, and X.-L. Xiong, “A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin,” Sensors 13, 12794 (2013).
[Crossref] [PubMed]

Surface Science (1)

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surface Science 608, 275–281 (2013).
[Crossref]

Technical Physics (1)

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Photochromic reactions in silver nanocomposites with a fractal structure and their comparative characteristics,” Technical Physics 48, 749–756 (2003).
[Crossref]

The Journal of Physical Chemistry C (1)

N. S. Abadeer and C. J. Murphy, “Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles,” The Journal of Physical Chemistry C 120, 4691–4716 (2016).
[Crossref]

Z. Phys. (2)

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
[Crossref]

A. V. Butenko, Y. E. Danilova, P. A. Chubakov, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Nonlinear optics of metal fractal clusters,” Z. Phys. 17, 283–289 (1990).

Other (8)

Y. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988).

J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).

L. D. Landau and E. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Oxford England Burlington, MA, 1986).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
[Crossref]

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

Y. A. Frenkel, The Kinetic Theory of Liquids (Nauka, Moscow, 1975).

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1986), 6th ed.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Extinction spectra of Ag — (a) and Au — (b) NPs with 20 nm radius at room (20 °C, solid line) and melting (≈ 1064 °C) temperatures for different values of liquid shell thicknesses h. Dielectric constant of the environment is εh = 1.78. The spectral range on graphs is limited by experimental data for optical constants of liquid metals [57].

Fig. 2
Fig. 2

(a), (b) — changes in extinction spectra Qe (λ) and differential spectra ΔQe (λ) = (Qe) in − (Qe) a of monodisperse Ag NP aggregate excited by pulsed radiation with 20 ps pulse duration and I = 2.4 × 108 W·cm−2 intensity (here (Qe) in is initial extinction, (Qe) a is extinction after irradiation); vertical dashed lines indicate excitation wavelengths. (a) — at the end of a pulse (dynamic effect), (b) — in 40 ns after a pulse (long-term effect); changes in resonant domain are shown in inset (b) (see the description in the text). NP aggregates were simulated with molecular dynamics method described in [24]. (c),(d) — positions of resonant domains in 3D aggregate consisting of N = 3000 Ag NPs with resonant wavelengths 450 nm (c) and 650 nm (d); polarization of incident field is indicated by arrows (in both cases 200 nanoparticles are highlighted).

Fig. 3
Fig. 3

The OPW geometry used in numerical simulations.

Fig. 4
Fig. 4

The temperature T distribution at t = 1 ns for first three OPW Ag NPs. Wavelength λ = 402 nm and polarization along the X axis — (a). Transmission spectra of the OPW at different moments of time: the initial moment of time (solid line); the beginning of i = 1 NP melting (dashed line); the end of i = 1 NP melting (dotted line) — (b).

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

m i r ¨ i = ( F vdw ) i + ( F el ) i + ( F opt ) i + ( F v ) i + ( F f ) i ,
( U vdw ) i j = A H 6 ( 2 R i R j h i j 2 + 2 R i h i j + 2 R j h i j + 2 R i R j h i j 2 + 2 R i h i j + 2 R j h i j + 4 R i R j + + ln h i j 2 + 2 R i h i j + 2 R j h i j h i j 2 + 2 R i h i j + 2 R j h i j + 4 R i R j ) ,
( U el ) i j = 8 15 ( h i + h j h i j ) 5 / 2 [ ( R i + h i ) ( R j + h j ) R i + h i + R j + h j ] 1 / 2 ( E el ) i ( E el ) j ( E el ) i + ( E el ) j H ( h i + h j h i j ) .
U opt = 1 4 Re i = 1 N [ d i E * ( r i ) + 1 2 d i ( d i ε 0 α i E ( r i ) ) * ε 0 α i | E 0 | 2 ] H ( τ t ) .
( F v ) i = 6 π η ( R i + h i ) v i ,
( F f ) i = μ j = 1 j i N | ( F el ) i j | q i j .
q i j = ( v j v i ) n i j ( ( v j v i ) n i j ) | ( v j v i ) n i j ( ( v j v i ) n i j ) | ,
d i = ε 0 α i [ E ( r i ) κ i + j i N G ^ ( r i , r j ) d j ] ,
α i 1 = [ α i ( 0 ) ] 1 i 6 π | k | 3 ,
Q e = σ e i = 1 N π R i 2 .
σ e = 4 π | k | Im i = 1 N ( d i E * ( r i ) ) | E 0 | 2 .
α i ( 0 ) = 4 π R i 3 × ( ε i L ε M ) ( ε i S + 2 ε i L ) + f i ( ε i S ε i L ) ( ε M + 2 ε i L ) ( ε i L + 2 ε M ) ( ε i S + 2 ε i L ) + 2 f i ( ε i S ε i L ) ( ε i L ε M ) .
ε i S,L = ε tab S , L + ω pl 2 ω ( ω + i Γ 0 ) ω pl 2 ω ( ω + i Γ i ) ,
Γ i = Γ 0 ( T i ion ) + A v F R i .
Γ 0 ( T ) = b T + c ,
C i e d T i e d t = g [ T i e T i ion ] + W i V i ,
W i = ω | d i | 2 2 ε 0 Im ( 1 α i * ) ,
d Q i ion d t = g V i [ T i e T i ion ] + υ i ,
T i ion = { Q i ion C i ion V i , when Q i ion < Q i ( 1 ) T i L , when Q i ( 1 ) Q i ion Q n ( 2 ) Q i ion L V i C i ion V i , when Q i ion > Q n ( 2 ) .
Q i ( 1 ) = C i ion V i T i L ,
Q i ( 2 ) = Q i ( 1 ) + L V i .
f i = { 0 , when Q n ion < Q i ( 1 ) Q i ion Q i ( 1 ) C i ion V i , when Q i ( 1 ) Q i ion Q i ( 2 ) 1 , when Q i ion > Q i ( 2 ) .
υ i = x S i T ( r , t ) n d S .
T ( r , t ) t = a Δ T ( r , t ) ,
τ r ( T ) = τ 0 exp ( U f k B T ) .
d ( E el ) i d t = ( E el ) i τ r ( ( T m ) i ) ,
G ^ ( r i , r j ) = G ^ free ( r i , r j ) + G ^ refl ( r i , r j ) ,
Q tr = | d N ( t ) | | d 1 ( t = 0 ) | ,

Metrics