Abstract

Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500–1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single photon source characterization with a superconducting single photon detector

Robert H. Hadfield, Martin J. Stevens, Steven S. Gruber, Aaron J. Miller, Robert E. Schwall, Richard P. Mirin, and Sae Woo Nam
Opt. Express 13(26) 10846-10853 (2005)

Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength

Dengkuan Liu, Shigehito Miki, Taro Yamashita, Lixing You, Zhen Wang, and Hirotaka Terai
Opt. Express 22(18) 21167-21174 (2014)

High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

Hanna Le Jeannic, Varun B. Verma, Adrien Cavaillès, Francesco Marsili, Matthew D. Shaw, Kun Huang, Olivier Morin, Sae Woo Nam, and Julien Laurat
Opt. Lett. 41(22) 5341-5344 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
    [Crossref] [PubMed]
  2. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
    [Crossref] [PubMed]
  3. Y. Chu and M. D. Lukin, “Quantum optics with nitrogen-vacancy centers in diamond,” https://arxiv.org/pdf/1504.05990 .
  4. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
    [Crossref] [PubMed]
  5. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
    [Crossref] [PubMed]
  6. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
    [Crossref]
  7. S. Fan, “Nanophotonics: Magnet-controlled plasmons,” Nat. Photonics 4, 76–77 (2010).
    [Crossref]
  8. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
    [Crossref]
  9. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
    [Crossref] [PubMed]
  10. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
    [Crossref] [PubMed]
  11. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
    [Crossref] [PubMed]
  12. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
    [Crossref] [PubMed]
  13. L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
    [Crossref]
  14. C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
    [Crossref] [PubMed]
  15. I. I. Vlasov and et al., “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
    [Crossref]
  16. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
    [Crossref] [PubMed]
  17. A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
    [Crossref]
  18. J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys-Condens. Mat. 18, S807–S824 (2006).
    [Crossref]
  19. L. Childress and R. Hanson, “Diamond NV centers for quantum computing and quantum networks,” MRS Bull. 38, 134–138 (2013).
    [Crossref]
  20. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
    [Crossref] [PubMed]
  21. J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
    [Crossref]
  22. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
    [Crossref] [PubMed]
  23. D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
    [Crossref] [PubMed]
  24. N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
    [Crossref] [PubMed]
  25. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [Crossref]
  26. A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
    [Crossref]
  27. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
    [Crossref] [PubMed]
  28. M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
    [Crossref]
  29. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref] [PubMed]
  30. T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
  31. L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
    [Crossref] [PubMed]
  32. J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
    [Crossref]
  33. I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
    [Crossref]
  34. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
    [Crossref]
  35. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 63001 (2012).
    [Crossref]
  36. M. V. Sidorova, A. V. Divochiy, Y. B. Vakhtomin, and K. V. Smirnov, “Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber,” J. Nanophotonics 9, 093051 (2015).
    [Crossref]
  37. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
    [Crossref] [PubMed]
  38. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
    [Crossref] [PubMed]
  39. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [Crossref]
  40. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
    [Crossref] [PubMed]
  41. D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
    [Crossref]
  42. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
    [Crossref]
  43. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [Crossref] [PubMed]
  44. S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
    [Crossref]
  45. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
    [Crossref] [PubMed]
  46. G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
    [Crossref]
  47. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
    [Crossref]
  48. A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
    [Crossref]
  49. E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
    [Crossref]
  50. K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
    [Crossref]
  51. H. Shibata, T. Honjo, and K. Shimizu, “Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors,” Opt. Lett. 39, 5078–5081 (2014).
    [Crossref] [PubMed]
  52. M. G. Tanner, V. Makarov, and R. H. Hadfield, “Optimised quantum hacking of superconducting nanowire single-photon detectors,” Opt. Express 22, 6734–6748 (2014).
    [Crossref] [PubMed]
  53. M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, “Characteristics of superconducting single photon detector in DPS-QKD system under bright illumination blinding attack,” Opt. Express 21, 6304–6312 (2013).
    [Crossref] [PubMed]
  54. A. J. Kerman, D. Rosenberg, R. J. Molnar, and A. E. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
    [Crossref]
  55. M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
    [Crossref]
  56. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: A review,” Sensors 14, 5823–5844 (2014).
    [Crossref] [PubMed]
  57. L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
    [Crossref] [PubMed]
  58. P. Yeh, Optical Waves in Layered Media Hoboken (Wiley, 2005), p.102.
  59. A Korneev and et al., “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
    [Crossref]
  60. Refractive index database, http://refractiveindex.info .
  61. A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
    [Crossref]

2015 (7)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

M. V. Sidorova, A. V. Divochiy, Y. B. Vakhtomin, and K. V. Smirnov, “Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber,” J. Nanophotonics 9, 093051 (2015).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

2014 (11)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: A review,” Sensors 14, 5823–5844 (2014).
[Crossref] [PubMed]

M. G. Tanner, V. Makarov, and R. H. Hadfield, “Optimised quantum hacking of superconducting nanowire single-photon detectors,” Opt. Express 22, 6734–6748 (2014).
[Crossref] [PubMed]

H. Shibata, T. Honjo, and K. Shimizu, “Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors,” Opt. Lett. 39, 5078–5081 (2014).
[Crossref] [PubMed]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

I. I. Vlasov and et al., “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

2013 (16)

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref] [PubMed]

L. Childress and R. Hanson, “Diamond NV centers for quantum computing and quantum networks,” MRS Bull. 38, 134–138 (2013).
[Crossref]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, “Characteristics of superconducting single photon detector in DPS-QKD system under bright illumination blinding attack,” Opt. Express 21, 6304–6312 (2013).
[Crossref] [PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref] [PubMed]

A. J. Kerman, D. Rosenberg, R. J. Molnar, and A. E. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

A Korneev and et al., “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

2012 (7)

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 63001 (2012).
[Crossref]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

2011 (4)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
[Crossref] [PubMed]

2010 (4)

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

S. Fan, “Nanophotonics: Magnet-controlled plasmons,” Nat. Photonics 4, 76–77 (2010).
[Crossref]

2009 (2)

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
[Crossref]

2008 (2)

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

2007 (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

2006 (3)

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys-Condens. Mat. 18, S807–S824 (2006).
[Crossref]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Abshire, J. B.

M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
[Crossref]

Akimov, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Alkemade, P. F. A.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Antipov, A.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

Arai, K.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Atatüre, M.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Baek, B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Bajcsy, M.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Bar-Gill, N.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref] [PubMed]

Barron, R. J.

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Bazin, A.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Beaudoin, G.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Becher, C.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Becker, J. N.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Bennett, S. D.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Benson, O.

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Berggren, K. K.

Bernien, H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Beveratos, A.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Binder, J. M.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Blakley, S.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

Blok, M. S.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Boltasseva, A.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Braakman, F. R.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

Braive, R.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Bramerie, L.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Budker, D.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref] [PubMed]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Buller, G. S.

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

Capasso, F.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

Caplan, D. O.

Cappellaro, P.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Carney, J. J.

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Chen, J.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Chen, W.

Childress, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Childress and R. Hanson, “Diamond NV centers for quantum computing and quantum networks,” MRS Bull. 38, 134–138 (2013).
[Crossref]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Chisholm, N.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

Chulkova, G.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Cirac, J. I.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Dauler, A. E.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and A. E. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

Dauler, E. A.

de Dood, M. J. A.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

De Leon, N. P.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

DeVience, S. J.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

Divochiy, A.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

Divochiy, A. V.

M. V. Sidorova, A. V. Divochiy, Y. B. Vakhtomin, and K. V. Smirnov, “Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber,” J. Nanophotonics 9, 093051 (2015).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Dorenbos, S. N.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref] [PubMed]

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

Döscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Driessen, E. F. C.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

Dutt, M. V. G.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Elvira, D.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Englund, D.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

Englund, D. E.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Evans, R.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

Fain, B.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Fan, L.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Fan, S.

S. Fan, “Nanophotonics: Magnet-controlled plasmons,” Nat. Photonics 4, 76–77 (2010).
[Crossref]

Faraon, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Fedotov, I. V.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

Feng, F.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Ferrari, S.

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

Ferrera, M.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Fu, K. M. C.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Fujiwara, M.

Gali, A.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Gay, M.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Gemmell, N. R.

Glenn, D. R.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

Gol’tsman, G. N.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Goltsman, G.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Goltsman, G. N.

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Guo, G.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Guo, G.-C.

Guo, J.-F.

Guo, L.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Hadfield, R. H.

M. G. Tanner, V. Makarov, and R. H. Hadfield, “Optimised quantum hacking of superconducting nanowire single-photon detectors,” Opt. Express 22, 6734–6748 (2014).
[Crossref] [PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 63001 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Hamilton, S. A.

Han, Z.-F.

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Hanson, R.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Childress and R. Hanson, “Diamond NV centers for quantum computing and quantum networks,” MRS Bull. 38, 134–138 (2013).
[Crossref]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Hausmann, B. J. M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

Hemmer, P.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Hemmer, P. R.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Hensen, B.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Hepp, C.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Höckel, D.

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

Hodges, J. S.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Hollenberg, L. C.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Hong, S.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Honjo, T.

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Hunger, D.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Irudayaraj, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Isoya, J.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Jahnke, K.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Jahnke, K. D.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Jarmola, A.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref] [PubMed]

Jelezko, F.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys-Condens. Mat. 18, S807–S824 (2006).
[Crossref]

Jiang, L.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Kahl, O.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

Kerman, A. J.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and A. E. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref] [PubMed]

Kewes, G.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Kildishev, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Klapwijk, T. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Klimov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Komeili, A.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

Koolstra, G.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Korneev, A

A Korneev and et al., “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

Korneev, A.

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

Korneeva, Y.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

Kovalyuk, V.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

Krainak, M. A.

M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
[Crossref]

Kranz, C.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Krichel, N. J.

Kubo, M.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Kucsko, G.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Lagutchev, A.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Larionov, P.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

Latta, C.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Le Sage, D.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

Lenglé, K.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Li, H.-W.

Li, M.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Liu, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Lo, P. K.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Löchel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Loncar, M.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: A review,” Sensors 14, 5823–5844 (2014).
[Crossref] [PubMed]

Lou, L.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Majumdar, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

Makarov, V.

Manova, N.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Markham, M.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Marseglia, L.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Maurer, P. C.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Maze, J. R.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

McCarthy, A.

McGuinness, L.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Meesala, S.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Metsch, M. H.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Michon, A.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Miko, L. R.

M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
[Crossref]

Minaeva, O.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Mirin, R. P.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Molnar, R. J.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

A. J. Kerman, D. Rosenberg, R. J. Molnar, and A. E. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

Monnier, P.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

Müller, C.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Müller, T.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Nakamura, K.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Nam, S.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 63001 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Naydenov, B.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Neumann, P.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Noh, H. J.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Nüsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

O’Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Ohshima, T.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Park, H.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Pastawski, F.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Patriarche, G.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Pernice, W.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Pernice, W. H. P.

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

Petroff, P.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

Pfaff, W.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Pham, L. M.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref] [PubMed]

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

Pingault, B.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

Rahn-Lee, L.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

Raineri, F.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Raj, R.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

Reiger, E. M.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

Ren, X.

Robert-Philip, I.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Robinson, B. S.

Robledo, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Rogers, L.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Rogers, L. J.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Rosenberg, D.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

A. J. Kerman, D. Rosenberg, R. J. Molnar, and A. E. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

Safronov, N. A.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

Sagnes, I.

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Santori, C.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Sasaki, M.

Schauffert, H.

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Schell, A. W.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schietinger, S.

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schuck, C.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Scully, M. O.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

Semenov, A.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Serebryannikov, E. E.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

Sergienko, A.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Shalaginov, M. Y.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Shibata, H.

Shields, B. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Shimizu, K.

Sidorova, M. V.

M. V. Sidorova, A. V. Divochiy, Y. B. Vakhtomin, and K. V. Smirnov, “Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber,” J. Nanophotonics 9, 093051 (2015).
[Crossref]

Sipahigil, A.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Smirnov, K.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Smirnov, K. V.

M. V. Sidorova, A. V. Divochiy, Y. B. Vakhtomin, and K. V. Smirnov, “Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber,” J. Nanophotonics 9, 093051 (2015).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Smolyaninov, A. N.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Song, X.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Stanwix, P. L.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Steinmüller-Nethl, D.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Sternschulte, H.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Steudle, G. A.

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

Stevens, M. J.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Stevens, M. L.

Sumiya, H.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Sun, X.

M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
[Crossref]

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tamaki, K.

M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, “Characteristics of superconducting single photon detector in DPS-QKD system under bright illumination blinding attack,” Opt. Express 21, 6304–6312 (2013).
[Crossref] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Taminiau, T. H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Tang, H.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Tanner, M. G.

M. G. Tanner, V. Makarov, and R. H. Hadfield, “Optimised quantum hacking of superconducting nanowire single-photon detectors,” Opt. Express 22, 6734–6748 (2014).
[Crossref] [PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 63001 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Taylor, J. M.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Teraji, T.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Togan, E.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Tong, L.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: A review,” Sensors 14, 5823–5844 (2014).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
[Crossref] [PubMed]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Twitchen, D. J.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Urena, E. B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Vachtomin, Y.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Vakhtomin, Y. B.

M. V. Sidorova, A. V. Divochiy, Y. B. Vakhtomin, and K. V. Smirnov, “Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber,” J. Nanophotonics 9, 093051 (2015).
[Crossref]

Velichansky, V. L.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

Vlasov, I. I.

I. I. Vlasov and et al., “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Vorobyov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Vuckovic, J.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

Walsworth, R.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Walsworth, R. L.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref] [PubMed]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Wang, G.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Wang, J.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Wang, P.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
[Crossref] [PubMed]

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

Wang, S.

Wang, Y.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: A review,” Sensors 14, 5823–5844 (2014).
[Crossref] [PubMed]

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Waselowski, V.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Wolf, T.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Wrachtrup, J.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys-Condens. Mat. 18, S807–S824 (2006).
[Crossref]

Xiao, Y.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
[Crossref] [PubMed]

Yacoby, A.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Yang, G.

M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
[Crossref]

Yang, J. K.

Yao, N. Y.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media Hoboken (Wiley, 2005), p.102.

Yin, Z.-Q.

Yu, C. L.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Yu, H.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
[Crossref] [PubMed]

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

Zadeh, I. E.

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

Zhang, J.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Zhang, L.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
[Crossref] [PubMed]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Zhang, W.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Zheltikov, A. M.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

Zheng, Z.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Zhou, Z.

Zhu, W.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Zibrov, A. S.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

Zou, C.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Zwiller, V.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref] [PubMed]

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

Appl. Phys. Express (1)

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

Appl. Phys. Lett. (8)

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010).
[Crossref]

A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104, 011102 (2014).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105, 261109 (2014).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[Crossref]

Eur. Phys. J-Appl. Phys. (1)

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J-Appl. Phys. 47, 10701 (2009).
[Crossref]

IEEE T. Appl. Supercon. (2)

A Korneev and et al., “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent nanowire superconducting single-photon detector optimization for practical applications,” IEEE T. Appl. Supercon. 23, 2201204 (2013).
[Crossref]

J. Appl. Phys. (2)

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

A. J. Kerman, D. Rosenberg, R. J. Molnar, and A. E. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113, 144511 (2013).
[Crossref]

J. Nanophotonics (1)

M. V. Sidorova, A. V. Divochiy, Y. B. Vakhtomin, and K. V. Smirnov, “Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber,” J. Nanophotonics 9, 093051 (2015).
[Crossref]

J. Phys-Condens. Mat. (1)

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys-Condens. Mat. 18, S807–S824 (2006).
[Crossref]

Lab Chip (1)

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11, 3720–3724 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9, 120–127 (2014).
[Crossref]

MRS Bull. (1)

L. Childress and R. Hanson, “Diamond NV centers for quantum computing and quantum networks,” MRS Bull. 38, 134–138 (2013).
[Crossref]

Nano Lett. (1)

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. De Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncǎr, “Coupling of NV Centers to photonic crystal nanobeams in diamond,” Nano Lett. 13(12), 5791–5796 (2013).
[Crossref] [PubMed]

Nat. Commun. (6)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref] [PubMed]

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

L. Rogers, K. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. McGuinness, and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state,” Nat. Commun. 5, 4739 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

I. I. Vlasov and et al., “Molecular-sized fluorescent nanodiamonds,” Nat. Nanotechnol. 9, 54–58 (2014).
[Crossref]

Nat. Photonics (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

S. Fan, “Nanophotonics: Magnet-controlled plasmons,” Nat. Photonics 4, 76–77 (2010).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Nat. Phys. (1)

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Nature (5)

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Phys. Rev. A (1)

G. A. Steudle, S. Schietinger, D. Höckel, S. N. Dorenbos, I. E. Zadeh, V. Zwiller, and O. Benson, “Measuring the quantum nature of light with a single source and a single detector,” Phys. Rev. A 86, 053814 (2012).
[Crossref]

Phys. Rev. B (1)

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91, 155404 (2015).
[Crossref]

Phys. Rev. Lett. (4)

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).
[Crossref] [PubMed]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Proc. SPIE (1)

M. A. Krainak, X. Sun, G. Yang, L. R. Miko, and J. B. Abshire, “Photon detectors with large dynamic range and at near infrared wavelength for direct detection space lidars,” Proc. SPIE 7320, 732005 (2009).
[Crossref]

Science (3)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons”, Science 340, 331–334 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286 (2012).
[Crossref] [PubMed]

Scientific reports (1)

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Scientific reports 5, 10941 (2015).
[Crossref] [PubMed]

Sensors (1)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: A review,” Sensors 14, 5823–5844 (2014).
[Crossref] [PubMed]

Supercond. Sci. Tech. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 63001 (2012).
[Crossref]

Other (3)

Y. Chu and M. D. Lukin, “Quantum optics with nitrogen-vacancy centers in diamond,” https://arxiv.org/pdf/1504.05990 .

P. Yeh, Optical Waves in Layered Media Hoboken (Wiley, 2005), p.102.

Refractive index database, http://refractiveindex.info .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Schematic of SSPD consisting of Cu contacts, 4-nm thick NbN meander, and 160 nm thick SiO2, forming a cavity on top of 0.5 mm thick Si substrate. b) SSPD jitter (doted red line) was found to be 62 ps. Jitter has been calculated as a square root of the difference between squared FWHM of the counts histogram (blue curve) and squared nominal laser pulse duration (black line). c) Red dots show spectral sensitivity of SSPD for unpolarized light in the 500–1300 nm range at operating temperature of 4.2 K, measured for the photon flux of 108 photons per second. Black curve shows calculated absorption spectrum of the SSPD with a 160 nm SiO2 cavity. Gray area on the graph shows NV centers emission range. Blue line shows NV center zero-phonon line. d) Quantum efficiency at 633 nm wavelength (colored points) and dark count rate (black points) of SSPD versus detector bias current at operating temperature of 4.2 K. Red, blue and green curves in the inset stand for the cases of optimal polarization giving maximum count rate, unpolarized light and polarization giving minimum count rate, respectively. Bias currents are given in fractions of a critical current Ic, which is measured to be 29 μA.

Fig. 2
Fig. 2

a) Schematic of experimental setup. b),c) Comparison of g(2)(τ) autocorrelation function obtained by a commercially available APD (b) and an SSPD (c). d) Photoluminescence decay for a single nanodiamond NV center on top of the hyperbolic metamaterial. e) Simulation of the dependence of the g(2) function at τ = 0 on quantum emitter lifetime (see Appendix for more details). Orange line – conventional APD with QE = 0.6 and dark-counts level 1500 cps, jitter 300 ps; green line – idealized APD with dark counts 0.1 cps, black dash doted line – APD with dark counts specified in data sheet. Blue line – SSPD with QE = 0.2, jitter = 0.06 ns, black line – SSPD with high QE = 0.6. Signal-to-noise ratio was chosen to be 100 in order to take into account background compensation procedure (see Appendix).

Fig. 3
Fig. 3

a) Maximum count rate (blue) and quantum efficiency (red) of the detector at 532 nm wavelength as a function of detector bias current. b) Detector count rate (blue) and effective current (red): experimental data (solid lines) and modeling results (dashed lines); bias current is 0.62 Ic. Green line is for constant voltage regime corresponding to bias current of 0.62 Ic set at 1 MHz count rate. Effective current was measured by exponential fitting of the detector signal decay. c) Detector count rate as a function of input photon rate at 532 nm for different bias current (shown on the plot as a fraction of critical current) d) Next photon detection probability under exposure (bias current is 0.62 Ic, count rate is 123 MHz); dead time is 3 ns; after 10 ns detector is almost fully recovered.

Fig. 4
Fig. 4

Measured g(2)(τ) from a single NV center on top of hyperbolic metamaterial with APD (a) and SSPD (c). Graphs (a) and (c) represent raw g(2)(τ) measurements, while (b) and (d) – g(2)(τ) measurements after background compensation, which resulted in effective improvement of signal-to-noise from 3 to 100.

Fig. 5
Fig. 5

Simplified level diagram for incoherent pumped NV center.

Fig. 6
Fig. 6

Results of g(2)(0) calculations based on the model described for realistic experimental parameters. We made the following assumption about the signal into the detector: an input count rate of 80k counts per second and a noise level of 37k counts per second, giving signal-to-noise ratio of 2.3. a) g(2)(0) versus emitter lifetime. The orange curve represents an estimate for a real APD with dark counts, green corresponds to ideal APD with no dark counts but the same jitter of 350 ps as the real one, while the black dash dotted line represents an APD with dark counts as specified in data sheet. The black and blue lines correspond to the SSPD with and without dark counts. b) Level of g(2)(0) for a given life time of 3 ns versus the quantum efficiency of the detector. SSPD curve was only calculated starting from 0.001 quantum efficiency which is still enough to overcome dark counts with a signal assumed above.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = S 1 ( t ) S 2 ( t + τ ) S 1 ( t ) S 2 ( t + τ ) ,
g ^ ( 2 ) ( τ ) = ( S 1 ( t ) + N 1 ( t ) ) ( S 2 ( t + τ ) + N 2 ( t + τ ) ) S 1 ( t ) + N 1 ( t ) S 2 ( t + τ ) + N 2 ( t + τ ) = = g ( τ ) ( 2 ) S 1 ( t ) S 2 ( t + τ ) + N 1 ( t ) S 2 ( t + τ ) + S 1 ( t ) N 2 ( t + τ ) + N 1 ( t ) N 2 ( t + τ ) S 1 ( t ) S 2 ( t + τ ) + N 1 ( t ) S 2 ( t + τ ) + S 1 ( t ) N 2 ( t + τ ) + N 1 ( t ) N 2 ( t + τ ) .
g ( 2 ) ( τ ) = g ^ ( 2 ) ( τ ) × S 1 S 2 + N 1 S 2 + N 2 S 2 + N 1 N 2 S 1 S 2 N 1 N 2 + N 1 S 2 + N 2 S 2 S 1 S 2 , S i = I i N i , i = 1 , 2.
d n e d t = R n g γ n e
n e + n g = 1 ,
n e ( t ) = R R + γ ( 1 exp ( t ( R + γ ) ) )
g ( 2 ) ( t ) = n e ( t ) n e ( )
P ( t ) = 1 2 π σ exp ( 1 2 ( t σ ) 2 )
g ( 2 ) ( τ ) = + g ( 2 ) ( τ + t ) P ( t ) d t
p reg ( t , I w , N in ) d t = ( 1 P reg ( t , I w ) ) ν ( I ( I w , t ) ) N in d t
p reg = d P reg d t
I avg ( T , I w ) = 1 T 0 T I ( I w , t ) d t = I w ( 1 + τ T ( exp ( T τ ) 1 ) )
I ¯ ( I w ) = 0 I avg ( t , I w ) p reg ( t , I w ) d t 0 t p reg ( t , I w ) d t
N out = 1 0 t p reg ( t , I w ) d t

Metrics