Abstract

We present a comparative study on a continuous-wave laser operation of Yb-doped Y3Ga2A13O12 (Yb:YGAG) ceramic at cryogenic temperatures with conventional pumping (940 nm) and zero phonon line pumping (969 nm) under identical experimental conditions. In CW laser operation, at 80 K with ZPL pumping, a maximum output power of 6.53 W with a slope efficiency of 52.0% is achieved with respect to incident power. When compared between two pump sources at cryogenic temperatures, ZPL pumping performs better due to the difference of quantum defect between the two pump sources that results in different heat load in the sample. In passive Q-switching experiment, at 100 K, with 85% initial transmission of Cr:YAG, an average output power of 3.37 W with a repetition rate of 17.6 kHz was achieved. The pulse energy, pulse width and peak power obtained in this case were 0.19 mJ, 164 ns and 1.16 W respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cryogenically-cooled Yb:YGAG ceramic mode-locked laser

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček
Opt. Express 24(2) 1402-1408 (2016)

Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures

Venkatesan Jambunathan, Lucie Horackova, Taisuke Miura, Jan Sulc, Helena Jelínková, Akira Endo, Antonio Lucianetti, and Tomas Mocek
Opt. Mater. Express 5(6) 1289-1295 (2015)

Laser performances of diode pumped Yb:Lu2O3 transparent ceramic at cryogenic temperatures

Samuel Paul David, Venkatesan Jambunathan, Fangxin Yue, Bruno Jean Le Garrec, Antonio Lucianetti, and Tomas Mocek
Opt. Mater. Express 9(12) 4669-4676 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  2. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  4. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  5. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  6. D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
    [Crossref]
  7. D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Science and Engineering 4, e15 (2016).
    [Crossref]
  8. D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
    [Crossref]
  9. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
    [Crossref]
  10. V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” High-Power, High-Energy, and High-Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers 8780 (2013).
    [Crossref]
  11. V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelinkova, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
    [Crossref]
  12. J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
    [Crossref] [PubMed]
  13. V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
    [Crossref]

2016 (4)

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Science and Engineering 4, e15 (2016).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

2015 (1)

2014 (1)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

2011 (1)

2007 (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2006 (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

2005 (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Brown, D. C.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Science and Engineering 4, e15 (2016).
[Crossref]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Cone, R. L.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Endo, A.

Equall, R. W.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Fan, T. Y.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Hancock, C.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

Hein, J.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Horackova, L.

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelinkova, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

Jambunathan, V.

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelinkova, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Jelínek, M.

Jelinkova, H.

Kaluza, M. C.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Kolis, J.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Science and Engineering 4, e15 (2016).
[Crossref]

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

Körner, J.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Kubecek, V.

Loeser, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Lucianetti, A.

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelinkova, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

McMillen, C.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

Miller, D.

Miura, T.

Mocek, T.

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelinkova, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Moore, C.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

Mužík, J.

Navratil, P.

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Rand, D.

Ripin, D. J.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sanjeewa, L.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

Schramm, U.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Seifert, R.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Siebold, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Sikocinski, P.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Smrž, M.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sulc, J.

Sun, Y. C.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Tornegard, S.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Science and Engineering 4, e15 (2016).
[Crossref]

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

Appl. Phys. B (1)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Appl. Sci. (1)

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers,” Appl. Sci. 6(1), 23 (2016).
[Crossref]

High Power Laser Science and Engineering (1)

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Science and Engineering 4, e15 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

V. Jambunathan, L. Horackova, P. Navratil, A. Lucianetti, and T. Mocek, “Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm,” IEEE Photonics Technol. Lett. 28(12), 1328–1331 (2016).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (2)

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (1)

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” High-Power, High-Energy, and High-Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers 8780 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cryogenic laser setup: L1, L2 achromatic lens for imaging (150 mm and 300 mm focal length and 2 inch diameter), M1 – concave mirror (- 300 mm radius of curvature), M2 –dichroic mirror (50 mm diameter), L3 – plano convex lens (150 mm focal length), M3 – plane output coupler mirrors (Toc = 2%, 3%, 5%, 10% and 20%) and coated 10at.% Yb:YGAG ceramic.
Fig. 2
Fig. 2 CW output power characteristics of Yb:YGAG with various output couplers for (a) 940 nm pumping and (b) 969 nm pumping.
Fig. 3
Fig. 3 CW output power characteristics of Yb:YGAG at various temperatures with Toc = 20% for (a) 940 nm pumping and (b) 969 nm pumping.
Fig. 4
Fig. 4 (a) Evolution of laser threshold and slope efficiency of Yb:YGAG with respect to launched pump power at various temperatures for two different pump sources and Toc = 20%. (b) Evolution of maximum output power characteristics of Yb:YGAG at various temperatures for two different pump wavelengths with Toc = 20%.
Fig. 5
Fig. 5 (a) Observed laser emission wavelength at various temperatures with Toc = 20% and CW beam profile at 100 K (b) Estimated slope efficiency for Yb:YGAG with respect to absorbed power at 100 K with both pump wavelengths (940 nm and 969 nm).
Fig. 6
Fig. 6 (a) Average output power of cryogenic Yb:YGAG at different temperature with 85% initial transmission of Cr:YAG as a function of launched pump power. (b) Measured repetition rate and pulse width as a function of launched pump power for various temperatures of Yb:YGAG.
Fig. 7
Fig. 7 (a) Estimated pulse energy and peak power as a function of launched pump power of cryogenic Yb:YGAG for various temperatures with 85% initial transmission of Cr:YAG. (b) Measured laser pulse width of 164 ns, corresponding pulse repetition rate of 17.6 kHz for 85% initial transmission of Cr:YAG for a launched pump power of 11.6 W and measured beam profile at 100 K during passive Q-switching experiment.

Tables (1)

Tables Icon

Table 1 Output characteristics at maximum incident power of passively Q-switched cryogenic Yb:YGAG laser using 85% initial transmission Cr:YAG as saturable absorber

Metrics