Abstract

We report on the observation of an efficient coherent up-conversion via third harmonic generation (THG) in Rb0.94Mn[Fe(CN)6]0.98.0.3H2O material. Our THG measurements at fundamental wavelengths ranging from 1200 to 2400 nm show that, in this spectral range, the THG signal overcomes the signal generated by frequency doubling. This demonstrates that this material possesses significant third-order nonlinear optical (NLO) responses. Its effective χ(3) value is at least two orders of magnitude greater than α-Quartz. We also demonstrate that this material exhibits a broad thermal hysteresis loop around room temperature, which makes it possible to simultaneously photo-commute its linear and third-order nonlinear optical properties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controllable color display induced by excitation-intensity-dependent competition between second and third harmonic generation in ZnO nanorods

Jun Dai, Mao-Hui Yuan, Jian-Hua Zeng, Qiao-Feng Dai, Sheng Lan, Chai Xiao, and Shao-Long Tie
Appl. Opt. 53(2) 189-194 (2014)

Study of diacetylene monomer and polymer monolayers using second- and third-harmonic generation

G. Berkovic, R. Superfine, P. Guyot-Sionnest, Y. R. Shen, and P. N. Prasad
J. Opt. Soc. Am. B 5(3) 668-673 (1988)

K4GeP4Se12: a case for phase-change nonlinear optical chalcogenide

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis
Opt. Lett. 38(8) 1316-1318 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ludi and H. U. Güdel, “Structural chemistry of polynuclear transition metal cyanides,” Struct. Bonding 14, 1–21 (1973).
    [Crossref]
  2. S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
    [Crossref]
  3. H. Tokoro and S. Ohkoshi, “Continuous change of second-order nonlinear optical activity in a cyano-bridged coordination polymer photo-induced phase transition in RbMnFe Prussian blue analog-based magnet,” in Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems, Otsu Motoichi, ed. (Springer, Berlin, 2010).
  4. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  5. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  6. P. N. Butcher and D. Cotter, The Element of Nonlinear Optics (Cambridge, 1990).
  7. S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
    [Crossref]
  8. S. K. Kurtz and T. T. Perry, “A powder techniques for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
    [Crossref]
  9. I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering,” Appl. Phys. Lett. 104(7), 071107 (2014).
    [Crossref]
  10. I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation by micropowders: A revision of the Kurtz–Perry method and its practical application,” Appl. Phys. B 116(1), 211–233 (2014).
    [Crossref]
  11. M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
    [Crossref]
  12. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
    [Crossref]
  13. X. L. Yang and S. W. Xie, “Expression of third-order effective nonlinear susceptibility for third-harmonic generation in crystals,” Appl. Opt. 34(27), 6130–6135 (1995).
    [Crossref] [PubMed]
  14. E~2Z0IτS where I, Z0, τ and S are the energy of the pulse, the impedance of free space (~377 ohms), the pulse duration and surface of the laser beam on the sample, respectively.
  15. G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
    [Crossref]

2016 (1)

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

2014 (2)

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering,” Appl. Phys. Lett. 104(7), 071107 (2014).
[Crossref]

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation by micropowders: A revision of the Kurtz–Perry method and its practical application,” Appl. Phys. B 116(1), 211–233 (2014).
[Crossref]

2010 (2)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

2008 (1)

S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
[Crossref]

2005 (1)

S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
[Crossref]

1995 (1)

1973 (1)

A. Ludi and H. U. Güdel, “Structural chemistry of polynuclear transition metal cyanides,” Struct. Bonding 14, 1–21 (1973).
[Crossref]

1968 (1)

S. K. Kurtz and T. T. Perry, “A powder techniques for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[Crossref]

Aramburu, I.

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering,” Appl. Phys. Lett. 104(7), 071107 (2014).
[Crossref]

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation by micropowders: A revision of the Kurtz–Perry method and its practical application,” Appl. Phys. B 116(1), 211–233 (2014).
[Crossref]

Christodoulides, D. N.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Degert, J.

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

Etrillard, C.

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

Etxebarria, J.

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation by micropowders: A revision of the Kurtz–Perry method and its practical application,” Appl. Phys. B 116(1), 211–233 (2014).
[Crossref]

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering,” Appl. Phys. Lett. 104(7), 071107 (2014).
[Crossref]

Folcia, C. L.

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation by micropowders: A revision of the Kurtz–Perry method and its practical application,” Appl. Phys. B 116(1), 211–233 (2014).
[Crossref]

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering,” Appl. Phys. Lett. 104(7), 071107 (2014).
[Crossref]

Freysz, E.

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

Galle, G.

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

Güdel, H. U.

A. Ludi and H. U. Güdel, “Structural chemistry of polynuclear transition metal cyanides,” Struct. Bonding 14, 1–21 (1973).
[Crossref]

Hashimoto, K.

S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
[Crossref]

Ji, W.

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

Khoo, I. C.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Kurtz, S. K.

S. K. Kurtz and T. T. Perry, “A powder techniques for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[Crossref]

Letard, J. F.

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

Liu, M.

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

Ludi, A.

A. Ludi and H. U. Güdel, “Structural chemistry of polynuclear transition metal cyanides,” Struct. Bonding 14, 1–21 (1973).
[Crossref]

Matsuda, T.

S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
[Crossref]

S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
[Crossref]

Mauriac, C.

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

Nuida, T.

S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
[Crossref]

S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
[Crossref]

Ohkoshi, S.

S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
[Crossref]

S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
[Crossref]

Ortega, J.

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation by micropowders: A revision of the Kurtz–Perry method and its practical application,” Appl. Phys. B 116(1), 211–233 (2014).
[Crossref]

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering,” Appl. Phys. Lett. 104(7), 071107 (2014).
[Crossref]

Perry, T. T.

S. K. Kurtz and T. T. Perry, “A powder techniques for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[Crossref]

Quah, H. S.

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

Saito, S.

S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
[Crossref]

Salamo, G. J.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Tokoro, H.

S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
[Crossref]

S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
[Crossref]

Van Stryland, E. W.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Vittal, J. J.

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

Wen, S.

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

Xie, S. W.

Yang, X. L.

Yu, Z.

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

Adv. Opt. Photonics (1)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation by micropowders: A revision of the Kurtz–Perry method and its practical application,” Appl. Phys. B 116(1), 211–233 (2014).
[Crossref]

Appl. Phys. Lett. (1)

I. Aramburu, J. Ortega, C. L. Folcia, and J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering,” Appl. Phys. Lett. 104(7), 071107 (2014).
[Crossref]

Chem. Mater. (1)

M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal, and W. Ji, “Efficient third harmonic generation in a metal−organic framework,” Chem. Mater. 28(10), 3385–3390 (2016).
[Crossref]

Chem. Phys. Lett. (1)

G. Galle, J. Degert, C. Mauriac, C. Etrillard, J. F. Letard, and E. Freysz, “Nanosecond study of spin state transition induced by a single nanosecond laser shot on [Fe(NH2trz)3] compounds inside and outside their thermal hysteresis loops,” Chem. Phys. Lett. 500(1–3), 18–22 (2010).
[Crossref]

J. Appl. Phys. (1)

S. K. Kurtz and T. T. Perry, “A powder techniques for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[Crossref]

J. Mater. Chem. (1)

S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, and K. Hashimoto, “The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry,” J. Mater. Chem. 15(32), 3291–3295 (2005).
[Crossref]

J. Phys. Chem. C (1)

S. Ohkoshi, S. Saito, T. Matsuda, T. Nuida, and H. Tokoro, “Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer,” J. Phys. Chem. C 112(34), 13095–13098 (2008).
[Crossref]

Struct. Bonding (1)

A. Ludi and H. U. Güdel, “Structural chemistry of polynuclear transition metal cyanides,” Struct. Bonding 14, 1–21 (1973).
[Crossref]

Other (5)

H. Tokoro and S. Ohkoshi, “Continuous change of second-order nonlinear optical activity in a cyano-bridged coordination polymer photo-induced phase transition in RbMnFe Prussian blue analog-based magnet,” in Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems, Otsu Motoichi, ed. (Springer, Berlin, 2010).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

P. N. Butcher and D. Cotter, The Element of Nonlinear Optics (Cambridge, 1990).

E~2Z0IτS where I, Z0, τ and S are the energy of the pulse, the impedance of free space (~377 ohms), the pulse duration and surface of the laser beam on the sample, respectively.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Hysteresis loop of the sample revealed by the χMT-T plots. The insets show that in the LT phase the color of the sample is dark brown. Its color turns light brown in the HT phase.
Fig. 2
Fig. 2 Absorption spectra and refractive indices of the sample in the LT and HT phases (deduced from [S. Ohkoshi et al., J. Mater. Chem. 15, 3291–3295 (2005).]).
Fig. 3
Fig. 3 THG experimental set-up and pictures of the THG signal produced at the surface of the sample when excited by femtosecond pulses centered at I) λ = 1400 nm, II) λ = 1600 nm and III) λ = 1900 nm.
Fig. 4
Fig. 4 .a) Evolution of the spectra and intensity of THG signal versus the intensity at the fundamental wavelength. The experiment was performed in the LT and HT phases exciting the sample at λ = 1920 nm. b) Normalized THG spectra recorded at different excitation wavelengths.
Fig. 5
Fig. 5 Micro-crystallite geometry considered for the computation of β.
Fig. 6
Fig. 6 Spectral evolution of effective χ(3)RbMnFe and absorption of our sample in the HT (red) and LT (blue) phases. The solid lines are guides for the eyes.
Fig. 7
Fig. 7 a) Pictures of the sample in the LT and HT phases. The central picture displays the sample that has been excited by a powerful laser pulse. The shined spot turns from dark brown to light brown. b) Evolution of the THG signal versus the intensity of the fundamental laser beam. The solid lines in blue and red are the THG signals recorded in the LT and HT phases, respectively. The blue and red dots are the THG signals recorded at low intensity before and after photo-commutation of the sample, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I V (3ω,r) r 2 χ RbMnFe ( 3 ) 2 si n 2 ( Δkr 2 )+sin h 2 ( αr 4 ) ( Δkr 2 ) 2 + ( αr 4 ) 2 e αr/2 I 3 (ω)
I V ' ( 3ω,r ) I V (3ω,r)
I V T ( 3ω,r )β( ω,M )N I V (3ω,r) 
β(ω,M)=R( 3ω )[ 1+ T 2 ( 3ω ) ] n=1 M T 6( n1 ) (ω) T 2n1 (3ω) e nαr
I ZnSe ( 3ω )N  I V ZnSe V ( 3ω,r )N  ( L c,s ZnSe ) 2 χ ZnSe ( 3 ) 2 I 3 ( ω ),

Metrics