Abstract

We propose augmenting dipole-dipole interactions with the use of epsilon-and-mu-near-zero (EMNZ) supercoupling. In particular, we demonstrate via numerical simulations that this tunneling effect enables the coupling of two distant (arbitrarily located and oriented) quantum emitters as if they were located in the proximity of each other and within a straight waveguide. This effect is empowered by the zero phase advance and geometry independent nature of EMNZ supercoupling. We expect that this mechanism might be exploited in the development of waveguide QED setups, for example, by relaxing the requirements in positioning the emitters, and/or by facilitating the design and integration of complex waveguide networks with intricate geometry. To finalize, we also provide proposals for the design of several potential realizations of this concept, including a simple microwave waveguide setup, of interest for future proof-of-concept experiments, as well as an all-dielectric platform, suitable for operation at optical frequencies and integration on a chip.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

A. M. Mahmoud, I. Liberal, and N. Engheta, "Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling: publisher’s note," Opt. Mater. Express 7, 1096-1096 (2017)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-7-3-1096

16 February 2017: A correction was made to the title.


OSA Recommended Articles
Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide

Ruzan Sokhoyan and Harry A. Atwater
Opt. Express 21(26) 32279-32290 (2013)

Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants

Lin Zhao, Yijun Feng, Bo Zhu, and Junming Zhao
Opt. Express 27(14) 20073-20083 (2019)

Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs

Jing Jing Yang, Yan Francescato, Stefan A Maier, Fuchun Mao, and Ming Huang
Opt. Express 22(8) 9107-9114 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  2. C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).
  3. Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
    [Crossref]
  4. A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
    [Crossref] [PubMed]
  5. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
    [Crossref] [PubMed]
  6. A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
    [Crossref] [PubMed]
  7. A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
    [Crossref] [PubMed]
  8. J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
    [Crossref]
  9. V. Paulisch, H. J. Kimble, and A. González-Tudela, “Universal Quantum Computation in Waveguide QED using Decoherence Free Subspaces,” New J. Phys. 18(4), 4043041 (2016).
    [Crossref]
  10. A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
    [Crossref] [PubMed]
  11. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
    [Crossref]
  12. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  13. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
    [Crossref]
  14. L. Frandsen, A. Harpøth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60 degrees bend obtained utilizing topology optimization,” Opt. Express 12(24), 5916–5921 (2004).
    [Crossref] [PubMed]
  15. A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
    [Crossref] [PubMed]
  16. M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  17. M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
    [Crossref]
  18. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]
  19. J. S. Marcos, M. G. Silveirinha, and N. Engheta, “µ-near-zero supercoupling,” Phys. Rev. B 91(19), 195112 (2015).
    [Crossref]
  20. I. Liberal, A. M. Mahmoud, and N. Engheta, “Geometry-Invariant Resonant Cavities,” Nat. Commun. 7, 10989 (2016).
    [Crossref] [PubMed]
  21. I. Liberal and N. Engheta, “Zero-Index Platforms: where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
    [Crossref]
  22. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
    [Crossref] [PubMed]
  23. N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
    [Crossref] [PubMed]
  24. D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
    [Crossref]
  25. C. Gonzalez-Ballestero, A. González-Tudela, F. J. Garcia-Vidal, and E. Moreno, “Chiral route to spontaneous entanglement generation,” Phys. Rev. B 92(15), 155304 (2015).
    [Crossref]
  26. E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
    [Crossref]
  27. R. Sokhoyan and H. A. Atwater, “Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide,” Opt. Express 21(26), 32279–32290 (2013).
    [Crossref] [PubMed]
  28. R. Sokhoyan and H. A. Atwater, “Cooperative behavior of quantum dipole emitters coupled to a zero-index nanoscale waveguide,” Prepress available http//arxiv.org/abs/1510.07071 (2015).
  29. R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
    [Crossref]
  30. P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
    [Crossref]
  31. I. Liberal and N. Engheta, “Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities,” Sci. Adv. 2(10), e1600987 (2016).
    [Crossref] [PubMed]
  32. C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” http://arxiv.org/abs/1601.04013 1–5 (2016).
  33. J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
    [Crossref]
  34. Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
    [Crossref] [PubMed]
  35. G. Song, J. Xu, and Y. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
    [Crossref]
  36. H. T. Dung, L. Knöll, and D.-G. Welsch, “Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings,” Phys. Rev. A 66(6), 063810 (2002).
    [Crossref]
  37. W. Vogel and D.-G. Welsch, Quantum Optics (John Wiley & Sons, 2006).
  38. W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
    [Crossref]
  39. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468 (2006).
    [Crossref]
  40. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
    [Crossref]
  41. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
    [Crossref]
  42. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  43. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  44. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
    [Crossref]
  45. J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc. IEEE100, 51–62 (1953).
  46. W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” Antennas Propagation, IRE Trans. 10(1), 17–19 (1962).
    [Crossref]
  47. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
    [Crossref] [PubMed]
  48. C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
    [Crossref]
  49. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  50. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
    [Crossref]
  51. Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
    [Crossref]
  52. S. G. Joannopoulos, J. D. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

2016 (6)

V. Paulisch, H. J. Kimble, and A. González-Tudela, “Universal Quantum Computation in Waveguide QED using Decoherence Free Subspaces,” New J. Phys. 18(4), 4043041 (2016).
[Crossref]

I. Liberal, A. M. Mahmoud, and N. Engheta, “Geometry-Invariant Resonant Cavities,” Nat. Commun. 7, 10989 (2016).
[Crossref] [PubMed]

I. Liberal and N. Engheta, “Zero-Index Platforms: where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

I. Liberal and N. Engheta, “Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities,” Sci. Adv. 2(10), e1600987 (2016).
[Crossref] [PubMed]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

2015 (8)

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “µ-near-zero supercoupling,” Phys. Rev. B 91(19), 195112 (2015).
[Crossref]

C. Gonzalez-Ballestero, A. González-Tudela, F. J. Garcia-Vidal, and E. Moreno, “Chiral route to spontaneous entanglement generation,” Phys. Rev. B 92(15), 155304 (2015).
[Crossref]

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

2014 (4)

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

G. Song, J. Xu, and Y. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

2013 (7)

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

R. Sokhoyan and H. A. Atwater, “Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide,” Opt. Express 21(26), 32279–32290 (2013).
[Crossref] [PubMed]

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (1)

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

2011 (3)

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

2010 (1)

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

2009 (2)

C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

2008 (3)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

2007 (2)

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

2006 (3)

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468 (2006).
[Crossref]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

2005 (1)

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

2004 (2)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
[Crossref] [PubMed]

L. Frandsen, A. Harpøth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60 degrees bend obtained utilizing topology optimization,” Opt. Express 12(24), 5916–5921 (2004).
[Crossref] [PubMed]

2002 (1)

H. T. Dung, L. Knöll, and D.-G. Welsch, “Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings,” Phys. Rev. A 66(6), 063810 (2002).
[Crossref]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

1962 (1)

W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” Antennas Propagation, IRE Trans. 10(1), 17–19 (1962).
[Crossref]

1959 (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Alù, A.

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Atwater, H. A.

Bezares, F. J.

Blais, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Boltasseva, A.

Borel, P.

Bose, R.

C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).

Brown, J.

J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc. IEEE100, 51–62 (1953).

Bulu, I.

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

Caglayan, H.

Caldwell, J. D.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Chan, C. T.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Chang, D. E.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Chen, H.

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Choi, K. S.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

DeVault, C.

Douglas, J. S.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Dung, H. T.

H. T. Dung, L. Knöll, and D.-G. Welsch, “Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings,” Phys. Rev. A 66(6), 063810 (2002).
[Crossref]

Dutta, A.

Dzsotjan, D.

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Ellis, C. T.

Engheta, N.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

I. Liberal, A. M. Mahmoud, and N. Engheta, “Geometry-Invariant Resonant Cavities,” Nat. Commun. 7, 10989 (2016).
[Crossref] [PubMed]

I. Liberal and N. Engheta, “Zero-Index Platforms: where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

I. Liberal and N. Engheta, “Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities,” Sci. Adv. 2(10), e1600987 (2016).
[Crossref] [PubMed]

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “µ-near-zero supercoupling,” Phys. Rev. B 91(19), 195112 (2015).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Fedorov, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Ferrera, M.

Fleischhauer, M.

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

Fleury, R.

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

Frandsen, L.

Gao, J.

C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).

Garcia-Vidal, F. J.

C. Gonzalez-Ballestero, A. González-Tudela, F. J. Garcia-Vidal, and E. Moreno, “Chiral route to spontaneous entanglement generation,” Phys. Rev. B 92(15), 155304 (2015).
[Crossref]

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

García-Vidal, F. J.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Giles, A. J.

Glembocki, O. J.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Goban, A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Gonzalez-Ballestero, C.

C. Gonzalez-Ballestero, A. González-Tudela, F. J. Garcia-Vidal, and E. Moreno, “Chiral route to spontaneous entanglement generation,” Phys. Rev. B 92(15), 155304 (2015).
[Crossref]

González-Ballestero, C.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

González-Tudela, A.

V. Paulisch, H. J. Kimble, and A. González-Tudela, “Universal Quantum Computation in Waveguide QED using Decoherence Free Subspaces,” New J. Phys. 18(4), 4043041 (2016).
[Crossref]

C. Gonzalez-Ballestero, A. González-Tudela, F. J. Garcia-Vidal, and E. Moreno, “Chiral route to spontaneous entanglement generation,” Phys. Rev. B 92(15), 155304 (2015).
[Crossref]

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Gorshkov, V.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Habibian, H.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Hang, Z. H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Harpøth, A.

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Hood, J. D.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Huidobro, P. A.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Hung, C.-L.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Jensen, J.

Kästel, J.

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

Kildishev, A. V.

Kim, J.

Kimble, H. J.

V. Paulisch, H. J. Kimble, and A. González-Tudela, “Universal Quantum Computation in Waveguide QED using Decoherence Free Subspaces,” New J. Phys. 18(4), 4043041 (2016).
[Crossref]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Kinsey, N.

Kita, S.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Knöll, L.

H. T. Dung, L. Knöll, and D.-G. Welsch, “Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings,” Phys. Rev. A 66(6), 063810 (2002).
[Crossref]

Korobkin, D.

Kristensen, M.

Kurizki, G.

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

Lai, Y.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Lalumière, K.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Lee, J. H.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Li, J.

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Li, Y.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities,” Sci. Adv. 2(10), e1600987 (2016).
[Crossref] [PubMed]

I. Liberal, A. M. Mahmoud, and N. Engheta, “Geometry-Invariant Resonant Cavities,” Nat. Commun. 7, 10989 (2016).
[Crossref] [PubMed]

I. Liberal and N. Engheta, “Zero-Index Platforms: where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Lodahl, P.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Loncar, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Mahmoud, A. M.

I. Liberal, A. M. Mahmoud, and N. Engheta, “Geometry-Invariant Resonant Cavities,” Nat. Commun. 7, 10989 (2016).
[Crossref] [PubMed]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339 (2016).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Marcos, J. S.

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “µ-near-zero supercoupling,” Phys. Rev. B 91(19), 195112 (2015).
[Crossref]

Martin, M. J.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Martin-Cano, D.

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Martin-Moreno, L.

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Martín-Moreno, L.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Mazur, E.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

McClung, A. C.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

McMillan, J. F.

C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).

Moreno, E.

C. Gonzalez-Ballestero, A. González-Tudela, F. J. Garcia-Vidal, and E. Moreno, “Chiral route to spontaneous entanglement generation,” Phys. Rev. B 92(15), 155304 (2015).
[Crossref]

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Muniz, J. A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Muñoz, P.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Naik, G. V.

Nikitin, A. Y.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Painter, O.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Paulisch, V.

V. Paulisch, H. J. Kimble, and A. González-Tudela, “Universal Quantum Computation in Waveguide QED using Decoherence Free Subspaces,” New J. Phys. 18(4), 4043041 (2016).
[Crossref]

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Quan, Q.

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Reiserer, A.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Rempe, G.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Reshef, O.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Rotman, W.

W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” Antennas Propagation, IRE Trans. 10(1), 17–19 (1962).
[Crossref]

Sanders, B. C.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Shahmoon, E.

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

Shalaev, V. M.

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shvets, G.

Sigmund, O.

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Silveirinha, M. G.

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “µ-near-zero supercoupling,” Phys. Rev. B 91(19), 195112 (2015).
[Crossref]

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

Sokhoyan, R.

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Song, G.

G. Song, J. Xu, and Y. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Sørensen, A. S.

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Stobbe, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Sun, F. W.

C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).

Tejedor, C.

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Tischler, J. G.

Urzhumov, Y.

van Loo, A. F.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Vulis, D. I.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Wallraff, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Welsch, D.-G.

H. T. Dung, L. Knöll, and D.-G. Welsch, “Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings,” Phys. Rev. A 66(6), 063810 (2002).
[Crossref]

Wong, C. W.

C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).

Wu, Y.

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Xu, J.

G. Song, J. Xu, and Y. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Yang, Y.

G. Song, J. Xu, and Y. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Yin, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Yu, S.-P.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

Zhang, Z. Q.

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Zhu, S.

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
[Crossref] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Antennas Propagation, IRE Trans. (1)

W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” Antennas Propagation, IRE Trans. 10(1), 17–19 (1962).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Nat. Commun. (3)

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref] [PubMed]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

I. Liberal, A. M. Mahmoud, and N. Engheta, “Geometry-Invariant Resonant Cavities,” Nat. Commun. 7, 10989 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Nature (2)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

V. Paulisch, H. J. Kimble, and A. González-Tudela, “Universal Quantum Computation in Waveguide QED using Decoherence Free Subspaces,” New J. Phys. 18(4), 4043041 (2016).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Opt. Photonics News (1)

I. Liberal and N. Engheta, “Zero-Index Platforms: where light defies geometry,” Opt. Photonics News 27(7), 26–33 (2016).
[Crossref]

Optica (2)

Photonics Nanostructures – Fundam. Appl. (1)

C. W. Wong, J. Gao, J. F. McMillan, F. W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics Nanostructures – Fundam. Appl. 7, 47–55 (2009).

Phys. Rev. (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Phys. Rev. A (5)

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

G. Song, J. Xu, and Y. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

H. T. Dung, L. Knöll, and D.-G. Welsch, “Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings,” Phys. Rev. A 66(6), 063810 (2002).
[Crossref]

Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

Phys. Rev. B (8)

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

J. S. Marcos, M. G. Silveirinha, and N. Engheta, “µ-near-zero supercoupling,” Phys. Rev. B 91(19), 195112 (2015).
[Crossref]

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

C. Gonzalez-Ballestero, A. González-Tudela, F. J. Garcia-Vidal, and E. Moreno, “Chiral route to spontaneous entanglement generation,” Phys. Rev. B 92(15), 155304 (2015).
[Crossref]

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4 Pt 2), 046608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

A. González-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Sci. Adv. (1)

I. Liberal and N. Engheta, “Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities,” Sci. Adv. 2(10), e1600987 (2016).
[Crossref] [PubMed]

Science (2)

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-Mediated Interactions Between Distant Artificial Atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Other (5)

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” http://arxiv.org/abs/1601.04013 1–5 (2016).

R. Sokhoyan and H. A. Atwater, “Cooperative behavior of quantum dipole emitters coupled to a zero-index nanoscale waveguide,” Prepress available http//arxiv.org/abs/1510.07071 (2015).

S. G. Joannopoulos, J. D. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

W. Vogel and D.-G. Welsch, Quantum Optics (John Wiley & Sons, 2006).

J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc. IEEE100, 51–62 (1953).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a), (b) Schematic of an epsilon-and-mu-near-zero (EMNZ) medium emulating opening up or stretching the space at the dotted line between the two sections of an air-filled parallel-plate waveguide, while keeping the region as a “single point” electromagnetically. This keeps the interaction between two quantum emitters placed in the two sections of the waveguide the same as for a straight waveguide regardless from their relative orientation.
Fig. 2
Fig. 2 (a) Schematic of proposed structure for interaction between two two-dimensional (2D) quantum emitters separated by an epsilon-and-mu-near-zero (EMNZ) medium emulating opening up or stretching the space by being embedded between two air-filled waveguides. (b), (c) Colormap of ∆Γ12 and ∆Ω12, respectively, as a function of the location of the center of the rod C within the proposed EMNZ region. The interaction between two 2D emitters placed in the two sections of the waveguide is effectively the same as for a straight waveguide regardless of their relative orientation and the location of the rod.
Fig. 3
Fig. 3 (a) Schematic of two emitters separated by the proposed 3D structure for an effective epsilon-and-mu-near-zero (EMNZ) medium by being embedded between two waveguides. This keeps the interaction between two 3D emitters placed in the two sections of the waveguide effectively the same as for a straight waveguide regardless of their relative orientation. (b), (c) ∆Γ12 and ∆Ω12, respectively, as a function of normalized frequency. Addition of PEC wires around the dielectric rod mitigates the impact of the location of the rod within the structure.
Fig. 4
Fig. 4 (a) Geometry of proposed structure: A photonic crystal (PC) with a Dirac point at k=0 (Region 2, following [48]) is surrounded by a photonic band gap (PBG) region (Region 1). Input and output waveguides from the internal PC are constructed by removing single rows of rods in the PBG region. (b) Band structure of the PBG (Region 1, blue line) and the Dirac cone PC (Region 2, red line), (c) Sketch, snapshot and phase of the electric field, Ez, for three different configurations corresponding to “laterally shifted” (left), “90deg bend”(center), “180deg bend” (right) waveguides. The simulations setup is excited with a 2D magnetic y-oriented dipole (shown as blue arrow). (d) ∆Γ12 and ∆Ω12, as a function of normalized frequency for all three aforementioned cases. The numerical simulations ratify the enhanced transmission with almost zero-phase advance in all studied configurations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ 12 = 2 ω 0 2 ε 0 c 2 d 1 Im { G ( r 1 , r 2 , ω 0 ) } d 2
Ω 12 = ω 0 2 ε 0 c 2 d 1 Re { G ( r 1 , r 2 , ω 0 ) } d 2
Δ Γ 12 = Γ 12 E M N Z Γ 12 0 Γ 12 0
Δ Ω 12 = Ω 12 E M N Z Ω 12 0 Ω 12 0

Metrics