Abstract

Plasmonic nanoparticles hold great potential in photodynamic therapy (PDT). Herein, a nanoplatform of methylene blue (MB) loaded gold nanobipyramids@SiO2 (GBPs@SiO2-MB) was designed to optimize the generation rate of singlet oxygen (1O2), which was based on the plasmonic effect. The surface plasmon resonance (SPR) of GBPs was finely overlapped with the excitation absorption of MB, a wildly applied organic PDT drug prone to enzymatic degradation. This mesoporous silica coating nanoplatform protects MB molecules against degradation, and this overlap greatly enhances the 1O2 yield of MB by the SPR electron from the GBPs. The GBPs@SiO2-MB nanoparticles exhibit a synergistic effect of PDT and photothermal therapies (PTT) of cancer cells under laser irradiation. This study provides a alternative strategy to improve the classic MB treatment for phototherapy application.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy

Nana Li, Xuanyuan Wen, Jing Liu, Baoju Wang, Qiuqiang Zhan, and Sailing He
Opt. Mater. Express 6(4) 1161-1171 (2016)

Inorganic nanoparticles for optical bioimaging

Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)

Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy

Yong-Eun Lee Koo, Wenzhe Fan, Hoejin Hah, Hao Xu, Dan Orringer, Brian Ross, Alnawaz Rehemtulla, Martin A. Philbert, and Raoul Kopelman
Appl. Opt. 46(10) 1924-1930 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  2. J. Lv, Y. Yi, G. Wu, and W. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187, 148–150 (2017).
    [Crossref]
  3. Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
    [Crossref] [PubMed]
  4. G. Pasparakis, “Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy,” Small 9(24), 4130–4134 (2013).
    [Crossref] [PubMed]
  5. J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
    [Crossref]
  6. J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
    [Crossref] [PubMed]
  7. Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
    [Crossref] [PubMed]
  8. S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
    [Crossref] [PubMed]
  9. L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
    [Crossref] [PubMed]
  10. I. Gorelikov and N. Matsuura, “Single-Step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
    [Crossref] [PubMed]
  11. T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
    [Crossref] [PubMed]
  12. R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
    [Crossref] [PubMed]

2017 (1)

J. Lv, Y. Yi, G. Wu, and W. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187, 148–150 (2017).
[Crossref]

2015 (1)

J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
[Crossref]

2014 (3)

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
[Crossref] [PubMed]

G. Pasparakis, “Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy,” Small 9(24), 4130–4134 (2013).
[Crossref] [PubMed]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

2012 (1)

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

2011 (1)

R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
[Crossref] [PubMed]

2008 (1)

I. Gorelikov and N. Matsuura, “Single-Step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

2005 (1)

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Baptista, M. S.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Chen, X.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Cheng, S.

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

Cheng, Z.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

de Fátima Turchiello, R.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

de Oliveira, C. S.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Del Giglio, A.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Fan, L. J.

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

Gabrielli, D. S.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Gao, N.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Gorelikov, I.

I. Gorelikov and N. Matsuura, “Single-Step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Guan, Z.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Han, H. W.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

He, S.

J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
[Crossref]

Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
[Crossref] [PubMed]

Hwang, K. C.

R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
[Crossref] [PubMed]

Jang, E. S.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Ji, T.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Joe, A.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Junqueira, H. C.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Kim, B. M.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Kuo, C. L.

R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
[Crossref] [PubMed]

Li, L.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Li, N.

J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
[Crossref]

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Liu, W.

J. Lv, Y. Yi, G. Wu, and W. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187, 148–150 (2017).
[Crossref]

Liu, X.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Liu, Z.

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

Lv, J.

J. Lv, Y. Yi, G. Wu, and W. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187, 148–150 (2017).
[Crossref]

J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
[Crossref]

Ma, W.

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

Matsuura, N.

I. Gorelikov and N. Matsuura, “Single-Step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Nie, G.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Pasparakis, G.

G. Pasparakis, “Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy,” Small 9(24), 4130–4134 (2013).
[Crossref] [PubMed]

Qian, J.

Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
[Crossref] [PubMed]

Sagadevan, A.

R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
[Crossref] [PubMed]

Seo, S. H.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Severino, D.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Shen, X.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Shi, J.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Shi, X.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Tada, D. B.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Tardivo, J. P.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

Vankayala, R.

R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
[Crossref] [PubMed]

Vijayaraghavan, P.

R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
[Crossref] [PubMed]

Wang, B.

J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
[Crossref]

Wang, D.

Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
[Crossref] [PubMed]

Wang, H.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
[Crossref] [PubMed]

Wei, J.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Wen, T.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Wu, G.

J. Lv, Y. Yi, G. Wu, and W. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187, 148–150 (2017).
[Crossref]

Wu, X.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Xu, G. Q.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Xu, Q. H.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Yao, S. Q.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Yi, Y.

J. Lv, Y. Yi, G. Wu, and W. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187, 148–150 (2017).
[Crossref]

Yuan, P.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Zhang, H.

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

Zhang, X.

J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
[Crossref] [PubMed]

Zhao, R.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Zhao, T.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Zhao, Y.

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

ACS Nano (1)

Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, and G. Nie, “Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy,” ACS Nano 8(11), 11529–11542 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

Y. Zhang, J. Qian, D. Wang, Y. Wang, and S. He, “Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for in Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy,” Angew. Chem. Int. Ed. Engl. 52(4), 1148–1151 (2013).
[Crossref] [PubMed]

R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C. L. Kuo, and K. C. Hwang, “Metal Nanoparticles Sensitize the Formation of Singlet Oxygen,” Angew. Chem. Int. Ed. Engl. 50(45), 10640–10644 (2011).
[Crossref] [PubMed]

Biomaterials (1)

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Mater. Lett. (1)

J. Lv, Y. Yi, G. Wu, and W. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187, 148–150 (2017).
[Crossref]

Nano Lett. (1)

I. Gorelikov and N. Matsuura, “Single-Step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Nanoscale (2)

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma, “Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance,” Nanoscale 6(21), 12971–12980 (2014).
[Crossref] [PubMed]

Photodiagn. Photodyn. Ther. (1)

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, and M. S. Baptista, “Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref] [PubMed]

RSC Advances (1)

J. Lv, X. Zhang, N. Li, B. Wang, and S. He, “Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density,” RSC Advances 5(100), 81897–81904 (2015).
[Crossref]

Small (1)

G. Pasparakis, “Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy,” Small 9(24), 4130–4134 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) UV-Vis absorption spectra of the purified GBPs (black), GBPs@SiO2 (red), MB (green), GBPs@SiO2-MB (blue). (b) TEM image of the GBPs and (c) TEM image of GBPs@SiO2-MB.

Fig. 2
Fig. 2

Absorption spectra of ABDA in the presence of GBPs@SiO2-MB under irradiation of a laser at 660 nm. The power density of the laser is 800 mW cm−2.

Fig. 3
Fig. 3

(a) Photo-oxidation of ABDA as a function of time for GBPs@SiO2-MB and MB in the dark. (b) After addition of NaN3, the photo-oxidation of ABDA as a function of irradiation time for the GBPs@SiO2-MB and MB.

Fig. 4
Fig. 4

Photo-oxidation of ABDA as a function of irradiation time for GBPs@SiO2-MB and MB by laser at 660 nm. The laser power density is 800 mW cm−2.

Fig. 5
Fig. 5

Viability of HeLa cells after GBPs@SiO2-MB treatments with 660 nm laser irradiation, compared to untreated control cells, the power density of the laser is 800 mW cm−2.

Metrics