Abstract

The viscous behavior of synthetic silica tubes is studied during collapsing. This technique can be applied directly during the modified chemical vapor deposition (MCVD) of light-guiding preform preparation. By performing several experiments with different tube dimensions, the material viscosity can be measured. In addition, information concerning the thermal behavior of the glass tubes during this process (the difference between the outer and inner temperature depending on the process conditions) can be derived, which is important for process control. This MCVD-inherent temperature difference is caused by radiation loss in wavelength regions in which quartz glass is semitransparent.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of effective axial temperature profile in tube furnaces via the Viscous Stretching Method

Zhiwen Pan, Jens Kobelke, Kay Schuster, and Hartmut Bartelt
Opt. Mater. Express 5(9) 2024-2035 (2015)

Analysis of glass flow during extrusion of optical fiber preforms

Heike Ebendorff-Heidepriem and Tanya M. Monro
Opt. Mater. Express 2(3) 304-320 (2012)

Stress in optical waveguides. 1: Preforms

P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert
Appl. Opt. 25(7) 1093-1098 (1986)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Nagel, J. B. Mac Chesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
    [Crossref]
  2. J. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc. 73(12), 3537–3556 (1990).
    [Crossref]
  3. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
  4. G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 131–136 (1964).
  5. R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–216 (1970).
    [Crossref]
  6. B. K. Leko, “Viscosity of vitreous silica,” Fizika i khimiya stekla 5(3), 258–278 (1978).
  7. M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).
  8. U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).
  9. J. Kirchhof, “Reactor problems in Modified Chemical Vapor Deposition (I),” Cryst. Res. Technol. 20, 705–712 (1985).
    [Crossref]
  10. J. Kirchhof and A. Funke, “Reactor problems in Modified Chemical Vapor Deposition (II),” Cryst. Res. Technol. 21, 763–770 (1986).
    [Crossref]
  11. Heraeus, “Fused silica tubes for fiber production,” https://www.heraeus.com/en/hqs/products_hqs/optical_fiber/tubes_fiber/Tubes_fiber_production.aspx .
  12. J. Kirchhof and S. Unger, Opt. Mater. Express (to be published).
  13. I. A. Lewis, “The collapse of a viscous tube,” J. Fluid Mech. 81(01), 129–135 (1977).
    [Crossref]
  14. J. Kirchhof, “A hydrodynamic theory of the collapsing process for the preparation of optical waveguide preform,” phys. stat. sol.(a) 60, K127–K131 (1980).
    [Crossref]
  15. Th. Klupsch and Z. Pan, “Collapsing of glass tubes: Analytic approaches in a hydrodynamic problem with free boundaries,” J. Eng. Math.submitted.
  16. W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
    [Crossref]
  17. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
    [Crossref]
  18. J. R. Howell, M. P. Mengüc, and R. Siegel, Thermal Radiation Heat Transfer (Sixth Edition, CRC Press 2016).
  19. R. Viskanta and R. J. Grosh, “Heat transfer by simultaneous conduction and radiation in an absorbing medium,” J. Heat Transfer 84(1), 63–72 (1962).
    [Crossref]
  20. E. E. Anderson, R. Viskanta, and W. H. Stevenson, “Heat transfer through semitransparent solids,” J. Heat Transfer 95(2), 179–186 (1973).
    [Crossref]
  21. A. A. Men, “Radiative-conductive heat transfer in a medium with a cylindrical geometry: Part I,” J. Eng. Physics and Thermophysics 24, 681–686 (1973).
  22. A. A. Men, “Radiative-conductive heat transmission through a medium with a cylindrical geometry: Part II,” J. Eng. Physics and Thermophysics 25(1), 866–870 (1973).
    [Crossref]
  23. M. Czerny and L. Genzel, “Über die Eindringtiefe räumlich diffuser Strahlung im Glas,” Glastech. Ber. 25(5), 134–139 (1952).
  24. W. Geffcken, “Zur Fortleitung der Wärme in Glas bei hohen Temperaturen,” Glastech. Ber. 25, 392–396 (1952).
  25. A. V. Dvurechenskii, V. A. Petrov, and V. Yu. Reznik, “Spectral emittance of silica glasses at high temperatures,” High Temp. High Press. 11, 423–428 (1979).
  26. E. Loenen and L. van der Tempel, “Determination of absorption coefficients of glasses at high temperatures by measuring the thermal emission,” Nat. Lab. Unclassified Report 020/96 - TN-1996–00020.pdf.
  27. K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
    [Crossref]
  28. W. D. Kingery, “Heat-conductivity processes in glass,” J. Am. Ceram. Soc. 44(7), 302–304 (1961).
    [Crossref]
  29. P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
    [Crossref]
  30. M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
    [Crossref]
  31. R. Brückner, “Silicon dioxide,” Appl. Phys. (Berl.) 18, 101–131 (1997).

2014 (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

2012 (1)

2007 (1)

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

1997 (1)

R. Brückner, “Silicon dioxide,” Appl. Phys. (Berl.) 18, 101–131 (1997).

1993 (1)

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

1990 (1)

J. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc. 73(12), 3537–3556 (1990).
[Crossref]

1988 (1)

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

1986 (1)

J. Kirchhof and A. Funke, “Reactor problems in Modified Chemical Vapor Deposition (II),” Cryst. Res. Technol. 21, 763–770 (1986).
[Crossref]

1985 (1)

J. Kirchhof, “Reactor problems in Modified Chemical Vapor Deposition (I),” Cryst. Res. Technol. 20, 705–712 (1985).
[Crossref]

1982 (2)

S. R. Nagel, J. B. Mac Chesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

1979 (1)

A. V. Dvurechenskii, V. A. Petrov, and V. Yu. Reznik, “Spectral emittance of silica glasses at high temperatures,” High Temp. High Press. 11, 423–428 (1979).

1978 (1)

B. K. Leko, “Viscosity of vitreous silica,” Fizika i khimiya stekla 5(3), 258–278 (1978).

1977 (1)

I. A. Lewis, “The collapse of a viscous tube,” J. Fluid Mech. 81(01), 129–135 (1977).
[Crossref]

1973 (3)

E. E. Anderson, R. Viskanta, and W. H. Stevenson, “Heat transfer through semitransparent solids,” J. Heat Transfer 95(2), 179–186 (1973).
[Crossref]

A. A. Men, “Radiative-conductive heat transfer in a medium with a cylindrical geometry: Part I,” J. Eng. Physics and Thermophysics 24, 681–686 (1973).

A. A. Men, “Radiative-conductive heat transmission through a medium with a cylindrical geometry: Part II,” J. Eng. Physics and Thermophysics 25(1), 866–870 (1973).
[Crossref]

1970 (1)

R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–216 (1970).
[Crossref]

1964 (1)

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 131–136 (1964).

1962 (1)

R. Viskanta and R. J. Grosh, “Heat transfer by simultaneous conduction and radiation in an absorbing medium,” J. Heat Transfer 84(1), 63–72 (1962).
[Crossref]

1961 (1)

W. D. Kingery, “Heat-conductivity processes in glass,” J. Am. Ceram. Soc. 44(7), 302–304 (1961).
[Crossref]

1959 (2)

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[Crossref]

1952 (2)

M. Czerny and L. Genzel, “Über die Eindringtiefe räumlich diffuser Strahlung im Glas,” Glastech. Ber. 25(5), 134–139 (1952).

W. Geffcken, “Zur Fortleitung der Wärme in Glas bei hohen Temperaturen,” Glastech. Ber. 25, 392–396 (1952).

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Anderson, E. E.

E. E. Anderson, R. Viskanta, and W. H. Stevenson, “Heat transfer through semitransparent solids,” J. Heat Transfer 95(2), 179–186 (1973).
[Crossref]

Bartelt, H.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Boyd, K.

Brückner, R.

R. Brückner, “Silicon dioxide,” Appl. Phys. (Berl.) 18, 101–131 (1997).

R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–216 (1970).
[Crossref]

Connolly, T. J.

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

Corset, J.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Czerny, M.

M. Czerny and L. Genzel, “Über die Eindringtiefe räumlich diffuser Strahlung im Glas,” Glastech. Ber. 25(5), 134–139 (1952).

DiGiovanni, D. J.

J. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc. 73(12), 3537–3556 (1990).
[Crossref]

Dumas, P.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Dvurechenskii, A. V.

A. V. Dvurechenskii, V. A. Petrov, and V. Yu. Reznik, “Spectral emittance of silica glasses at high temperatures,” High Temp. High Press. 11, 423–428 (1979).

Ebendorff-Heidepriem, H.

Funke, A.

J. Kirchhof and A. Funke, “Reactor problems in Modified Chemical Vapor Deposition (II),” Cryst. Res. Technol. 21, 763–770 (1986).
[Crossref]

Geffcken, W.

W. Geffcken, “Zur Fortleitung der Wärme in Glas bei hohen Temperaturen,” Glastech. Ber. 25, 392–396 (1952).

Genzel, L.

M. Czerny and L. Genzel, “Über die Eindringtiefe räumlich diffuser Strahlung im Glas,” Glastech. Ber. 25(5), 134–139 (1952).

Grimm, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Grosh, R. J.

R. Viskanta and R. J. Grosh, “Heat transfer by simultaneous conduction and radiation in an absorbing medium,” J. Heat Transfer 84(1), 63–72 (1962).
[Crossref]

Hetherington, G.

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 131–136 (1964).

Ishiguro, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Ishikawa, S.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Jack, K. H.

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 131–136 (1964).

Kennedy, J. C.

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 131–136 (1964).

Kingery, W. D.

W. D. Kingery, “Heat-conductivity processes in glass,” J. Am. Ceram. Soc. 44(7), 302–304 (1961).
[Crossref]

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[Crossref]

Kirchhof, J.

J. Kirchhof and A. Funke, “Reactor problems in Modified Chemical Vapor Deposition (II),” Cryst. Res. Technol. 21, 763–770 (1986).
[Crossref]

J. Kirchhof, “Reactor problems in Modified Chemical Vapor Deposition (I),” Cryst. Res. Technol. 20, 705–712 (1985).
[Crossref]

J. Kirchhof and S. Unger, Opt. Mater. Express (to be published).

Klupsch, Th.

Th. Klupsch and Z. Pan, “Collapsing of glass tubes: Analytic approaches in a hydrodynamic problem with free boundaries,” J. Eng. Math.submitted.

Kobelke, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Kurkjian, C. R.

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

Kyoto, M.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Leko, B. K.

B. K. Leko, “Viscosity of vitreous silica,” Fizika i khimiya stekla 5(3), 258–278 (1978).

Levy, Y.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Lewis, I. A.

I. A. Lewis, “The collapse of a viscous tube,” J. Fluid Mech. 81(01), 129–135 (1977).
[Crossref]

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Mac Chesney, J. B.

S. R. Nagel, J. B. Mac Chesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

MacChesney, J.

J. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc. 73(12), 3537–3556 (1990).
[Crossref]

Men, A. A.

A. A. Men, “Radiative-conductive heat transfer in a medium with a cylindrical geometry: Part I,” J. Eng. Physics and Thermophysics 24, 681–686 (1973).

A. A. Men, “Radiative-conductive heat transmission through a medium with a cylindrical geometry: Part II,” J. Eng. Physics and Thermophysics 25(1), 866–870 (1973).
[Crossref]

Monro, T. M.

Munch, J.

Nagel, S. R.

S. R. Nagel, J. B. Mac Chesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Nascimento, M. L. F.

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

Neumann, V.

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Ohoga, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Paek, U. C.

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

Pan, Z.

Th. Klupsch and Z. Pan, “Collapsing of glass tubes: Analytic approaches in a hydrodynamic problem with free boundaries,” J. Eng. Math.submitted.

Petrov, V. A.

A. V. Dvurechenskii, V. A. Petrov, and V. Yu. Reznik, “Spectral emittance of silica glasses at high temperatures,” High Temp. High Press. 11, 423–428 (1979).

Reznik, V. Yu.

A. V. Dvurechenskii, V. A. Petrov, and V. Yu. Reznik, “Spectral emittance of silica glasses at high temperatures,” High Temp. High Press. 11, 423–428 (1979).

Schroeder, C. M.

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

Schuster, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Stevenson, W. H.

E. E. Anderson, R. Viskanta, and W. H. Stevenson, “Heat transfer through semitransparent solids,” J. Heat Transfer 95(2), 179–186 (1973).
[Crossref]

Unger, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

J. Kirchhof and S. Unger, Opt. Mater. Express (to be published).

Viskanta, R.

E. E. Anderson, R. Viskanta, and W. H. Stevenson, “Heat transfer through semitransparent solids,” J. Heat Transfer 95(2), 179–186 (1973).
[Crossref]

R. Viskanta and R. J. Grosh, “Heat transfer by simultaneous conduction and radiation in an absorbing medium,” J. Heat Transfer 84(1), 63–72 (1962).
[Crossref]

Walker, K. L.

S. R. Nagel, J. B. Mac Chesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Wray, K. L.

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

Zanotto, E. D.

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Appl. Phys. (Berl.) (1)

R. Brückner, “Silicon dioxide,” Appl. Phys. (Berl.) 18, 101–131 (1997).

Cryst. Res. Technol. (2)

J. Kirchhof, “Reactor problems in Modified Chemical Vapor Deposition (I),” Cryst. Res. Technol. 20, 705–712 (1985).
[Crossref]

J. Kirchhof and A. Funke, “Reactor problems in Modified Chemical Vapor Deposition (II),” Cryst. Res. Technol. 21, 763–770 (1986).
[Crossref]

Fizika i khimiya stekla (1)

B. K. Leko, “Viscosity of vitreous silica,” Fizika i khimiya stekla 5(3), 258–278 (1978).

Glass Technol. (1)

U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the viscosity of high silica glasses during fiber drawing,” Glass Technol. 29(6), 265–269 (1988).

Glastech. Ber. (2)

M. Czerny and L. Genzel, “Über die Eindringtiefe räumlich diffuser Strahlung im Glas,” Glastech. Ber. 25(5), 134–139 (1952).

W. Geffcken, “Zur Fortleitung der Wärme in Glas bei hohen Temperaturen,” Glastech. Ber. 25, 392–396 (1952).

High Temp. High Press. (1)

A. V. Dvurechenskii, V. A. Petrov, and V. Yu. Reznik, “Spectral emittance of silica glasses at high temperatures,” High Temp. High Press. 11, 423–428 (1979).

IEEE J. Quantum Electron. (1)

S. R. Nagel, J. B. Mac Chesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

J. Am. Ceram. Soc. (3)

J. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc. 73(12), 3537–3556 (1990).
[Crossref]

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[Crossref]

W. D. Kingery, “Heat-conductivity processes in glass,” J. Am. Ceram. Soc. 44(7), 302–304 (1961).
[Crossref]

J. Appl. Phys. (1)

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

J. Eng. Physics and Thermophysics (2)

A. A. Men, “Radiative-conductive heat transfer in a medium with a cylindrical geometry: Part I,” J. Eng. Physics and Thermophysics 24, 681–686 (1973).

A. A. Men, “Radiative-conductive heat transmission through a medium with a cylindrical geometry: Part II,” J. Eng. Physics and Thermophysics 25(1), 866–870 (1973).
[Crossref]

J. Fluid Mech. (1)

I. A. Lewis, “The collapse of a viscous tube,” J. Fluid Mech. 81(01), 129–135 (1977).
[Crossref]

J. Heat Transfer (2)

R. Viskanta and R. J. Grosh, “Heat transfer by simultaneous conduction and radiation in an absorbing medium,” J. Heat Transfer 84(1), 63–72 (1962).
[Crossref]

E. E. Anderson, R. Viskanta, and W. H. Stevenson, “Heat transfer through semitransparent solids,” J. Heat Transfer 95(2), 179–186 (1973).
[Crossref]

J. Mater. Sci. (1)

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

J. Non-Cryst. Solids (1)

R. Brückner, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–216 (1970).
[Crossref]

J. Raman Spectrosc. (1)

P. Dumas, J. Corset, Y. Levy, and V. Neumann, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc. 13(2), 134–138 (1982).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Glasses (1)

G. Hetherington, K. H. Jack, and J. C. Kennedy, “The viscosity of vitreous silica,” Phys. Chem. Glasses 5(5), 131–136 (1964).

Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B (1)

M. L. F. Nascimento and E. D. Zanotto, “Diffusion processes in vitreous silica revisited,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 201–217 (2007).

Other (6)

J. R. Howell, M. P. Mengüc, and R. Siegel, Thermal Radiation Heat Transfer (Sixth Edition, CRC Press 2016).

J. Kirchhof, “A hydrodynamic theory of the collapsing process for the preparation of optical waveguide preform,” phys. stat. sol.(a) 60, K127–K131 (1980).
[Crossref]

Th. Klupsch and Z. Pan, “Collapsing of glass tubes: Analytic approaches in a hydrodynamic problem with free boundaries,” J. Eng. Math.submitted.

Heraeus, “Fused silica tubes for fiber production,” https://www.heraeus.com/en/hqs/products_hqs/optical_fiber/tubes_fiber/Tubes_fiber_production.aspx .

J. Kirchhof and S. Unger, Opt. Mater. Express (to be published).

E. Loenen and L. van der Tempel, “Determination of absorption coefficients of glasses at high temperatures by measuring the thermal emission,” Nat. Lab. Unclassified Report 020/96 - TN-1996–00020.pdf.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Axial temperature profile measured at the tube surface (z: axial coordinate, Δzb: typical profile width, see the explanation in the text, vb: burner velocity).

Fig. 2
Fig. 2

Determined values of σ* depending on the tube dimensions for flames with oxygen excess (•) and hydrogen excess ( + ) for (a) F300 and (b) Fluosil. The error of the single measurement is between ± 0.02 and ± 0,04 N m−1.

Fig. 3
Fig. 3

Determined viscosity values η depending on temperature T for flames with oxygen excess (•) and hydrogen excess ( + ) for (a) F300 and (b) Fluosil. lnη is the natural logarithm, Φo the outer diameter and w the wall thickness of the tubes, respectively.

Fig. 4
Fig. 4

Pre-exponential factor lnη0 acc. to Fig. 3 as a function of the wall thickness w for (a) F300 and (b) Fluosil. The colors refer to the experiments and tube dimensions as described in the inset of Fig. 3.

Fig. 5
Fig. 5

Pre-exponential factors lnη0 acc. to Fig. 3 as a function of the ratio of wall thickness to profile width w/Δzb.for (a) F300 and (b) Fluosil. The colors refer to the experiments and tube dimensions as described in the inset of Fig. 3.

Fig. 6
Fig. 6

Scheme of the heat transport within the tube wall

Fig. 7
Fig. 7

To – Ti for radiation effects, calculated with Eq. (14) for parallel radiation ––– and for diffuse radiation in a two-plate approximation •

Fig. 8
Fig. 8

Viscosity increase (──) and temperature drop (- - - -) with increased wall thickness w, calculated on the basis of radiation effects for F300 and Fluosil with an effective temperature of 1800°C. For comparison: ……. To-Ti, calculated for axial heat conduction without radiation contribution (Δzb = 1.3 cm).

Tables (1)

Tables Icon

Table 1 Correction factor F depending on α = 2·ro/Δzb and β = ri/ro for the practically relevant range [15]

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

v ρ = p o p i +σ( r o 1 + r i 1 ) 2η( r o 2 r i 2 ) ρ 1
d r o dt d r i dt = dw dt = 1 2η ( p o p i r o 1 + r i 1 +σ )
Δw=( p o p i r o 1 ¯ + r i 1 ¯ +σ ) dt 2η
dt 2η = z1 z2 dz 2η v b = z1 z2 dz 2 η 0 v b e E RT(z) = Δ z b 2 η p v b
Δw=( p a p i r o 1 ¯ + r i 1 ¯ + p f r 0 1 ¯ + r i 1 ¯ +σ ) Δ z b 2 η p v b =( p a p i r o 1 ¯ + r i 1 ¯ + σ * ) Δ z b 2 η p v b
Δ z b = z1 z2 e E R ( 1 T( z ) 1 T p ) dz
η= 1 r i 2 r o 2 r i r o η( ρ ) ρ 3 dρ
η p,corr =F η p
F300: ln{ η/Pas }=20.20+68000/T
Fluosil: ln{ η/Pas }=12.40+48300/T
κ( 1 ρ ρ ( ρ T ρ )+ 2 T z 2 )+H( ρ,z )=0
H( ρ,z )= H e + α H e 4π 0 4π dΩ 0 l α e αl dl= H e 4π 0 4π e α l α dΩ
H( ρ )= H e 2 ( e α( r 0 ρ ) + e α( r 0 +ρ2 r i ) ).
H( ρ )=παK( e α( r 0 ρ ) + e α( r 0 ρ+2 r i ) ).

Metrics