Abstract

Using the second-order derivative spectrophotometry method, we have determined the energy of optical transitions of colloidal InP/ZnS core-shell quantum dots at room temperature: E1 = 2.60 eV corresponds to a first exciton absorption peak of the InP core, E2 = 4.70 eV appears to meet the processes in the ZnS shell. We have investigated E1(T) temperature dependence within 6.5 – 296 K range for the first time. The obtained experimental data have been approximated by means of a linear model and Fan’s expression. Also, it has been shown that the interaction between excitons and longitudinal acoustic phonons causes the energy E1 to change with temperature. In this case, the peak’s FWHM remains invariant and amounts to 0.39 eV, which indicates the inhomogeneous broadening character and a high degree of static disorder in the ensemble of the quantum dots studied.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lasing from colloidal InP/ZnS quantum dots

Shuai Gao, Chunfeng Zhang, Yanjun Liu, Huaipeng Su, Lai Wei, Tony Huang, Nicholas Dellas, Shuzhen Shang, Suzanne E. Mohney, Jingkang Wang, and Jian Xu
Opt. Express 19(6) 5528-5535 (2011)

Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots

Ke Wei, Zhongjie Xu, Runze Chen, Xin Zheng, Xiangai Cheng, and Tian Jiang
Opt. Lett. 41(16) 3821-3824 (2016)

Spectroscopy of optical gain in low threshold colloidal quantum dot laser media: dominance of single-exciton states at room temperature

Kwangdong Roh, Joonhee Lee, Cuong Dang, and Arto Nurmikko
Opt. Mater. Express 6(12) 3776-3786 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Xie, D. Battaglia, and X. Peng, “Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
    [Crossref] [PubMed]
  2. S.-H. Lee, K.-H. Lee, J.-H. Jo, B. Park, Y. Kwon, H. S. Jang, and H. Yang, “Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters,” Opt. Mater. Express 4(7), 1297–1302 (2014).
    [Crossref]
  3. W.-S. Song, S.-H. Lee, and H. Yang, “Fabrication of warm, high CRI white LED using non-cadmium quantum dots,” Opt. Mater. Express 3(9), 1468–1473 (2013).
    [Crossref]
  4. P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
    [Crossref]
  5. A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
    [Crossref]
  6. S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Luminescence parameters of InP/ZnS@AAO nanostructures,” AIP Conf. Proc. 1717, 040028 (2016).
    [Crossref]
  7. S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina,” J. Phys. Conf. Ser. 741(1), 012151 (2016).
    [Crossref]
  8. S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
    [Crossref] [PubMed]
  9. S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
    [Crossref]
  10. P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
    [Crossref] [PubMed]
  11. A. Narayanaswamy, L. F. Feiner, and P. J. Van Der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112(17), 6775–6780 (2008).
    [Crossref]
  12. A. Narayanaswamy, L. F. Feiner, A. Meijerink, and P. J. van der Zaag, “The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots,” ACS Nano 3(9), 2539–2546 (2009).
    [Crossref] [PubMed]
  13. H. Weller, “Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules,” Angew. Chem. Int. Ed. Engl. 32(1), 41–53 (1993).
    [Crossref]
  14. G. Talsky, Derivative Spectrophotometry: Low and Higher Order (VCH, 1994).
  15. A. P. Babichev, Handbook of Physical Quantities, I. S.Grigor’ev and E. Z. Meilikhov, eds. (Energoatomizdat, 1991).
  16. R. Kho, C. L. Torres-Martínez, and R. K. Mehra, “A simple colloidal synthesis for gram-quantity production of water- soluble ZnS nanocrystal powders,” J. Colloid Interface Sci. 227(2), 561–566 (2000).
    [Crossref] [PubMed]
  17. I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41(6), 905–908 (1999).
    [Crossref]
  18. H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
    [Crossref]
  19. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
    [Crossref]
  20. A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
    [Crossref] [PubMed]
  21. L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
    [Crossref]
  22. L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
    [Crossref]
  23. A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
    [Crossref]
  24. G. F. Alfrey and P. H. Borcherds, “Phonon frequencies from the Raman spectrum of indium phosphide,” J. Phys. C Solid State Phys. 5(20), L275–L278 (1972).
    [Crossref]
  25. W. J. Turner, W. E. Reese, and G. D. Pettit, “Exciton absorption and emission in InP,” Phys. Rev. 136(5A), A1467–A1470 (1964).
    [Crossref]
  26. S. A. Vaganov and R. P. Seisyan, “Temperature-dependent integral exciton absorption in semiconducting InP crystals,” Tech. Phys. Lett. 38(2), 121–124 (2012).
    [Crossref]
  27. D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
    [Crossref]
  28. I. A. Weinstein, A. F. Zatsepin, and Yu. V. Shchapova, “The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids,” Physica B 263–264, 167–169 (1999).
    [Crossref]
  29. I. A. Weinstein and A. F. Zatsepin, “Modified Urbach’s rule and frozen phonons in glasses,” Phys. Status Solidi1(11), 2916–2919 (2004) (c).
    [Crossref]
  30. L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
    [Crossref]

2016 (3)

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Luminescence parameters of InP/ZnS@AAO nanostructures,” AIP Conf. Proc. 1717, 040028 (2016).
[Crossref]

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina,” J. Phys. Conf. Ser. 741(1), 012151 (2016).
[Crossref]

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

2015 (2)

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (1)

S. A. Vaganov and R. P. Seisyan, “Temperature-dependent integral exciton absorption in semiconducting InP crystals,” Tech. Phys. Lett. 38(2), 121–124 (2012).
[Crossref]

2011 (1)

L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
[Crossref]

2009 (3)

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

A. Narayanaswamy, L. F. Feiner, A. Meijerink, and P. J. van der Zaag, “The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots,” ACS Nano 3(9), 2539–2546 (2009).
[Crossref] [PubMed]

2008 (2)

A. Narayanaswamy, L. F. Feiner, and P. J. Van Der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112(17), 6775–6780 (2008).
[Crossref]

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

2007 (1)

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

2000 (1)

R. Kho, C. L. Torres-Martínez, and R. K. Mehra, “A simple colloidal synthesis for gram-quantity production of water- soluble ZnS nanocrystal powders,” J. Colloid Interface Sci. 227(2), 561–566 (2000).
[Crossref] [PubMed]

1999 (2)

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41(6), 905–908 (1999).
[Crossref]

I. A. Weinstein, A. F. Zatsepin, and Yu. V. Shchapova, “The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids,” Physica B 263–264, 167–169 (1999).
[Crossref]

1998 (2)

L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
[Crossref]

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

1993 (1)

H. Weller, “Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules,” Angew. Chem. Int. Ed. Engl. 32(1), 41–53 (1993).
[Crossref]

1991 (2)

D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
[Crossref]

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

1984 (1)

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[Crossref]

1972 (1)

G. F. Alfrey and P. H. Borcherds, “Phonon frequencies from the Raman spectrum of indium phosphide,” J. Phys. C Solid State Phys. 5(20), L275–L278 (1972).
[Crossref]

1964 (1)

W. J. Turner, W. E. Reese, and G. D. Pettit, “Exciton absorption and emission in InP,” Phys. Rev. 136(5A), A1467–A1470 (1964).
[Crossref]

1951 (1)

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
[Crossref]

Alfrey, G. F.

G. F. Alfrey and P. H. Borcherds, “Phonon frequencies from the Raman spectrum of indium phosphide,” J. Phys. C Solid State Phys. 5(20), L275–L278 (1972).
[Crossref]

Austin, R. F.

D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
[Crossref]

Bang, J.

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

Bao, H.

L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
[Crossref]

Battaglia, D.

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

Borcherds, P. H.

G. F. Alfrey and P. H. Borcherds, “Phonon frequencies from the Raman spectrum of indium phosphide,” J. Phys. C Solid State Phys. 5(20), L275–L278 (1972).
[Crossref]

Brichkin, S. B.

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

Capizzi, M.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Cardona, M.

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[Crossref]

Chen, L.

L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
[Crossref]

Chen, X.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Cherepanova, S. V.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Chung, H.

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

De Luca, M.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Fan, H. Y.

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
[Crossref]

Feiner, L. F.

A. Narayanaswamy, L. F. Feiner, A. Meijerink, and P. J. van der Zaag, “The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots,” ACS Nano 3(9), 2539–2546 (2009).
[Crossref] [PubMed]

A. Narayanaswamy, L. F. Feiner, and P. J. Van Der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112(17), 6775–6780 (2008).
[Crossref]

Feldman, R. D.

D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
[Crossref]

Fonseka, H. A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Gak, V. Y.

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

Gerasimov, E. Yu.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Gorbunova, T. I.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Hsu, R.-C.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Hussain, S.

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

Jagadish, C.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Jang, H. S.

Jo, J.-H.

Johnson, A. M.

D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
[Crossref]

Kaichev, V. V.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Kamat, P. V.

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

Kho, R.

R. Kho, C. L. Torres-Martínez, and R. K. Mehra, “A simple colloidal synthesis for gram-quantity production of water- soluble ZnS nanocrystal powders,” J. Colloid Interface Sci. 227(2), 561–566 (2000).
[Crossref] [PubMed]

Kim, S.

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

Korovin, E. Yu.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Kortov, V. S.

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41(6), 905–908 (1999).
[Crossref]

Kozhevnikova, N. S.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Kozlova, E. A.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Kwon, Y.

Lee, D.

D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
[Crossref]

Lee, K.-H.

Lee, S.-H.

Li, L.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Lipovskii, A.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Logothetidis, S.

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[Crossref]

Mart’yanova, E. G.

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

Mehra, R. K.

R. Kho, C. L. Torres-Martínez, and R. K. Mehra, “A simple colloidal synthesis for gram-quantity production of water- soluble ZnS nanocrystal powders,” J. Colloid Interface Sci. 227(2), 561–566 (2000).
[Crossref] [PubMed]

Meijerink, A.

A. Narayanaswamy, L. F. Feiner, A. Meijerink, and P. J. van der Zaag, “The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots,” ACS Nano 3(9), 2539–2546 (2009).
[Crossref] [PubMed]

Miriametro, A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Nam, J.

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy, L. F. Feiner, A. Meijerink, and P. J. van der Zaag, “The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots,” ACS Nano 3(9), 2539–2546 (2009).
[Crossref] [PubMed]

A. Narayanaswamy, L. F. Feiner, and P. J. Van Der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112(17), 6775–6780 (2008).
[Crossref]

O’Donnell, K. P.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Olkhovets, A.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Park, B.

Peng, X.

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

Pettit, G. D.

W. J. Turner, W. E. Reese, and G. D. Pettit, “Exciton absorption and emission in InP,” Phys. Rev. 136(5A), A1467–A1470 (1964).
[Crossref]

Polimeni, A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Prezhdo, O. V.

L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
[Crossref]

Protière, M.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Razumov, V. F.

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

Reese, W. E.

W. J. Turner, W. E. Reese, and G. D. Pettit, “Exciton absorption and emission in InP,” Phys. Rev. 136(5A), A1467–A1470 (1964).
[Crossref]

Reiss, P.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Rempel, A. A.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Ruan, X.

L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
[Crossref]

Savchenko, S. S.

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Luminescence parameters of InP/ZnS@AAO nanostructures,” AIP Conf. Proc. 1717, 040028 (2016).
[Crossref]

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina,” J. Phys. Conf. Ser. 741(1), 012151 (2016).
[Crossref]

Seisyan, R. P.

S. A. Vaganov and R. P. Seisyan, “Temperature-dependent integral exciton absorption in semiconducting InP crystals,” Tech. Phys. Lett. 38(2), 121–124 (2012).
[Crossref]

Shchapova, Yu. V.

I. A. Weinstein, A. F. Zatsepin, and Yu. V. Shchapova, “The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids,” Physica B 263–264, 167–169 (1999).
[Crossref]

Shchipunov, Yu. A.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

Skuja, L.

L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
[Crossref]

Song, W.-S.

Spirin, M. G.

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

Tan, H. H.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Tan, T.

L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
[Crossref]

Tedeschi, D.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Torres-Martínez, C. L.

R. Kho, C. L. Torres-Martínez, and R. K. Mehra, “A simple colloidal synthesis for gram-quantity production of water- soluble ZnS nanocrystal powders,” J. Colloid Interface Sci. 227(2), 561–566 (2000).
[Crossref] [PubMed]

Tovstun, S. A.

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

Turner, W. J.

W. J. Turner, W. E. Reese, and G. D. Pettit, “Exciton absorption and emission in InP,” Phys. Rev. 136(5A), A1467–A1470 (1964).
[Crossref]

Vaganov, S. A.

S. A. Vaganov and R. P. Seisyan, “Temperature-dependent integral exciton absorption in semiconducting InP crystals,” Tech. Phys. Lett. 38(2), 121–124 (2012).
[Crossref]

Vainshtein, I. A.

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41(6), 905–908 (1999).
[Crossref]

Valeeva, A. A.

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

van der Zaag, P. J.

A. Narayanaswamy, L. F. Feiner, A. Meijerink, and P. J. van der Zaag, “The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots,” ACS Nano 3(9), 2539–2546 (2009).
[Crossref] [PubMed]

A. Narayanaswamy, L. F. Feiner, and P. J. Van Der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112(17), 6775–6780 (2008).
[Crossref]

Viña, L.

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[Crossref]

Vokhmintsev, A. S.

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina,” J. Phys. Conf. Ser. 741(1), 012151 (2016).
[Crossref]

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Luminescence parameters of InP/ZnS@AAO nanostructures,” AIP Conf. Proc. 1717, 040028 (2016).
[Crossref]

Weinstein, I. A.

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Luminescence parameters of InP/ZnS@AAO nanostructures,” AIP Conf. Proc. 1717, 040028 (2016).
[Crossref]

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina,” J. Phys. Conf. Ser. 741(1), 012151 (2016).
[Crossref]

I. A. Weinstein, A. F. Zatsepin, and Yu. V. Shchapova, “The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids,” Physica B 263–264, 167–169 (1999).
[Crossref]

I. A. Weinstein and A. F. Zatsepin, “Modified Urbach’s rule and frozen phonons in glasses,” Phys. Status Solidi1(11), 2916–2919 (2004) (c).
[Crossref]

Weller, H.

H. Weller, “Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules,” Angew. Chem. Int. Ed. Engl. 32(1), 41–53 (1993).
[Crossref]

Wise, F. W.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Won, N.

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

Xie, R.

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

Yang, H.

Zatsepin, A. F.

I. A. Weinstein, A. F. Zatsepin, and Yu. V. Shchapova, “The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids,” Physica B 263–264, 167–169 (1999).
[Crossref]

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41(6), 905–908 (1999).
[Crossref]

I. A. Weinstein and A. F. Zatsepin, “Modified Urbach’s rule and frozen phonons in glasses,” Phys. Status Solidi1(11), 2916–2919 (2004) (c).
[Crossref]

Zilli, A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

Zucker, J. E.

D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
[Crossref]

ACS Nano (2)

A. Narayanaswamy, L. F. Feiner, A. Meijerink, and P. J. van der Zaag, “The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots,” ACS Nano 3(9), 2539–2546 (2009).
[Crossref] [PubMed]

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref] [PubMed]

AIP Conf. Proc. (1)

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Luminescence parameters of InP/ZnS@AAO nanostructures,” AIP Conf. Proc. 1717, 040028 (2016).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

H. Weller, “Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules,” Angew. Chem. Int. Ed. Engl. 32(1), 41–53 (1993).
[Crossref]

Appl. Phys. Lett. (1)

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Catal. Commun. (1)

A. A. Rempel, E. A. Kozlova, T. I. Gorbunova, S. V. Cherepanova, E. Yu. Gerasimov, N. S. Kozhevnikova, A. A. Valeeva, E. Yu. Korovin, V. V. Kaichev, and Yu. A. Shchipunov, “Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures,” Catal. Commun. 68, 61–66 (2015).
[Crossref]

ChemPhysChem (1)

S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, and S. Kim, “One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging,” ChemPhysChem 10(9-10), 1466–1470 (2009).
[Crossref] [PubMed]

High Energy Chem. (1)

S. B. Brichkin, M. G. Spirin, S. A. Tovstun, V. Y. Gak, E. G. Mart’yanova, and V. F. Razumov, “Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes,” High Energy Chem. 50(5), 395–399 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. Lee, A. M. Johnson, J. E. Zucker, R. D. Feldman, and R. F. Austin, “Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth,” J. Appl. Phys. 69(9), 6722–6724 (1991).
[Crossref]

J. Colloid Interface Sci. (1)

R. Kho, C. L. Torres-Martínez, and R. K. Mehra, “A simple colloidal synthesis for gram-quantity production of water- soluble ZnS nanocrystal powders,” J. Colloid Interface Sci. 227(2), 561–566 (2000).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1–3), 16–48 (1998).
[Crossref]

J. Phys. C Solid State Phys. (1)

G. F. Alfrey and P. H. Borcherds, “Phonon frequencies from the Raman spectrum of indium phosphide,” J. Phys. C Solid State Phys. 5(20), L275–L278 (1972).
[Crossref]

J. Phys. Chem. C (3)

L. Chen, H. Bao, T. Tan, O. V. Prezhdo, and X. Ruan, “Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots,” J. Phys. Chem. C 115(23), 11400–11406 (2011).
[Crossref]

A. Narayanaswamy, L. F. Feiner, and P. J. Van Der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112(17), 6775–6780 (2008).
[Crossref]

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

J. Phys. Conf. Ser. (1)

S. S. Savchenko, A. S. Vokhmintsev, and I. A. Weinstein, “Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina,” J. Phys. Conf. Ser. 741(1), 012151 (2016).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. (2)

W. J. Turner, W. E. Reese, and G. D. Pettit, “Exciton absorption and emission in InP,” Phys. Rev. 136(5A), A1467–A1470 (1964).
[Crossref]

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
[Crossref]

Phys. Rev. B (1)

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[Crossref]

Phys. Rev. Lett. (1)

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Phys. Solid State (1)

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41(6), 905–908 (1999).
[Crossref]

Physica B (1)

I. A. Weinstein, A. F. Zatsepin, and Yu. V. Shchapova, “The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids,” Physica B 263–264, 167–169 (1999).
[Crossref]

Small (1)

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Tech. Phys. Lett. (1)

S. A. Vaganov and R. P. Seisyan, “Temperature-dependent integral exciton absorption in semiconducting InP crystals,” Tech. Phys. Lett. 38(2), 121–124 (2012).
[Crossref]

Other (3)

I. A. Weinstein and A. F. Zatsepin, “Modified Urbach’s rule and frozen phonons in glasses,” Phys. Status Solidi1(11), 2916–2919 (2004) (c).
[Crossref]

G. Talsky, Derivative Spectrophotometry: Low and Higher Order (VCH, 1994).

A. P. Babichev, Handbook of Physical Quantities, I. S.Grigor’ev and E. Z. Meilikhov, eds. (Energoatomizdat, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical absorption spectra of InP/ZnS for various concentrations (a) and temperatures (b). Second derivative spectra for various concentrations (c) and temperatures (d).

Fig. 2
Fig. 2

Energy shift and broadening analysis of exciton absorption band: (a) ΔE1 temperature dependence – blue square symbols are our experimental estimates, blue triangle symbols are experimental estimates from [25]; (b) normalized PL and OA spectra of the InP/ZnS QDs.

Tables (1)

Tables Icon

Table 1 Parameters of the temperature dependence of E1(T).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 1 (T)= E 1 (0) A F n s , where n s = [ exp(ω/kT)1 ] 1
E 1 (T)= E 1 (0)βT.
β = A F k ω .
E 1 (T)= E 1 (0)2Sω n s
E 1 (T)= E B a2a n s

Metrics