Abstract

A series of Zn2+ and Li+ inert ion single/co-doped Gd2O3: Ln3+ (Ln = Yb/Er, Eu) nanocrystals (NCs) were synthesized by a simple precipitate method followed by annealing at a high temperature. Compared with undoped Gd2O3: Ln3+ (Ln = Yb/Er, Eu) NCs, the samples doped with Zn2+ or Li+ ion all show an obvious enhancement on their upconversion (UC) and downconversion (DC) luminescence intensity. On the basis of the best single doping concentration of Zn2+ or Li+ ion, we codoped another ion (Li+ or Zn2+) into the NCs; the luminescence intensity shows a further enhancement. As a result, Zn2+ and Li+ dual ion codoping is a better strategy than single doped Zn2+ or Li+ ion to enhance the luminescence properties of Gd2O3: Yb/Er and Gd2O3: Eu NCs. This can be attributed to the smaller radius of the Zn2+/Li+ ions (Zn2+: 0.088 nm, Li+: 0.09 nm, all for six coordination) than that of the radius of Gd3+ ion (Gd3+: 0.1078 nm), and the heterogeneous valence of the Zn2+/Li+ ions. When they occupy the Gd3+ crystal lattice site in Gd2O3 NCs, they play different roles and complement each other in improving luminescence intensity of Gd2O3: Ln3+ (Ln = Yb/Er, Eu) NCs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals

Daguang Li, Weiping Qin, Dan Zhao, Tuerxun Aidilibike, Huan Chen, Shihu Liu, Peng Zhang, and Lili Wang
Opt. Mater. Express 6(1) 270-278 (2016)

Industrial fabrication of Mn-doped CdS/ZnS core/shell nanocrystals for white-light-emitting diodes

Xiaoqin Gao, Ningze Zhuo, Chen Liao, Lingzi Xiao, Haibo Wang, Yiping Cui, and Jiayu Zhang
Opt. Mater. Express 5(10) 2164-2173 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
    [Crossref] [PubMed]
  2. T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
    [Crossref]
  3. S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
    [Crossref]
  4. H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
    [Crossref] [PubMed]
  5. X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
    [Crossref]
  6. P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
    [Crossref]
  7. Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
    [Crossref] [PubMed]
  8. B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
    [Crossref] [PubMed]
  9. X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
    [Crossref] [PubMed]
  10. Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
    [Crossref] [PubMed]
  11. K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
    [Crossref]
  12. L. Tu, X. Liu, F. Wu, and H. Zhang, “Excitation energy migration dynamics in upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1331–1345 (2015).
    [Crossref] [PubMed]
  13. R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
    [Crossref] [PubMed]
  14. Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
    [Crossref] [PubMed]
  15. N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
    [Crossref] [PubMed]
  16. X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
    [Crossref] [PubMed]
  17. Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
    [Crossref]
  18. Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
    [Crossref]
  19. Q. Qiang, W. Chen, X. Ma, and Y. Wang, “The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies,” Dalton Trans. 44(13), 6242–6248 (2015).
    [Crossref] [PubMed]
  20. L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).
  21. M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
    [Crossref] [PubMed]
  22. H. Li, S. Song, W. Wang, and K. Chen, “In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light,” Dalton Trans. 44(36), 16081–16090 (2015).
    [Crossref] [PubMed]
  23. S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
    [Crossref]
  24. X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
    [Crossref]
  25. A. Kumari, A. Pandey, R. Dey, and V. K. Rai, “Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3: Tm3+–Yb3+ phosphors,” RSC Advances 4(42), 21844–21851 (2014).
    [Crossref]
  26. Y. Jia, Y. Song, Y. Bai, and Y. Wang, “Upconverted photoluminescence in Ho3+ and Yb3+ codoped Gd2O3 nanocrystals with and without Li+ ions,” Luminescence 26(4), 259–263 (2011).
    [Crossref] [PubMed]
  27. Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
    [Crossref]
  28. I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
    [Crossref]
  29. J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
    [Crossref]
  30. Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
    [Crossref]
  31. V. Kale, T. Soukka, J. Hölsä, and M. Lastusaari, “Enhancement of blue upconversion luminescence in hexagonal NaYF4: Yb, Tm by using K and Sc ions,” J. Nanopart. Res. 15(8), 1850 (2013).
    [Crossref]
  32. M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
    [Crossref] [PubMed]
  33. L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
    [Crossref] [PubMed]
  34. Q. Huang, J. Yu, E. Ma, and K. Lin, “Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ Tridoped NaYF4,” J. Phys. Chem. C 114(10), 4719–4724 (2010).
    [Crossref]
  35. B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
    [Crossref]
  36. C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
    [Crossref] [PubMed]
  37. N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
    [Crossref]
  38. G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
    [Crossref]
  39. Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
    [Crossref] [PubMed]

2016 (5)

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
[Crossref]

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

2015 (13)

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

H. Li, S. Song, W. Wang, and K. Chen, “In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light,” Dalton Trans. 44(36), 16081–16090 (2015).
[Crossref] [PubMed]

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
[Crossref] [PubMed]

K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
[Crossref]

L. Tu, X. Liu, F. Wu, and H. Zhang, “Excitation energy migration dynamics in upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1331–1345 (2015).
[Crossref] [PubMed]

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Q. Qiang, W. Chen, X. Ma, and Y. Wang, “The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies,” Dalton Trans. 44(13), 6242–6248 (2015).
[Crossref] [PubMed]

2014 (6)

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

A. Kumari, A. Pandey, R. Dey, and V. K. Rai, “Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3: Tm3+–Yb3+ phosphors,” RSC Advances 4(42), 21844–21851 (2014).
[Crossref]

Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
[Crossref] [PubMed]

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

2013 (3)

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

V. Kale, T. Soukka, J. Hölsä, and M. Lastusaari, “Enhancement of blue upconversion luminescence in hexagonal NaYF4: Yb, Tm by using K and Sc ions,” J. Nanopart. Res. 15(8), 1850 (2013).
[Crossref]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

2012 (2)

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

2011 (5)

Y. Jia, Y. Song, Y. Bai, and Y. Wang, “Upconverted photoluminescence in Ho3+ and Yb3+ codoped Gd2O3 nanocrystals with and without Li+ ions,” Luminescence 26(4), 259–263 (2011).
[Crossref] [PubMed]

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
[Crossref]

2010 (2)

Q. Huang, J. Yu, E. Ma, and K. Lin, “Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ Tridoped NaYF4,” J. Phys. Chem. C 114(10), 4719–4724 (2010).
[Crossref]

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

2008 (1)

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

2007 (1)

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

2000 (1)

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Ahmad, M. W.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Aoki, K.

K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
[Crossref]

Bae, J. E.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Baeck, J. S.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Bai, Y.

Y. Jia, Y. Song, Y. Bai, and Y. Wang, “Upconverted photoluminescence in Ho3+ and Yb3+ codoped Gd2O3 nanocrystals with and without Li+ ions,” Luminescence 26(4), 259–263 (2011).
[Crossref] [PubMed]

Bansal, A.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Bednarkiewicz, A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Byeon, S.-H.

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Cai, W.

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

Cao, S.

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

Capobianco, J. A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Chae, K. S.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Chakradhar, R. P. S.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

Chang, H.

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

Chang, Y.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Chen, B.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Chen, C.

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

Chen, D.

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

Chen, G.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Chen, K.

H. Li, S. Song, W. Wang, and K. Chen, “In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light,” Dalton Trans. 44(36), 16081–16090 (2015).
[Crossref] [PubMed]

Chen, R.

X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
[Crossref]

Chen, W.

Q. Qiang, W. Chen, X. Ma, and Y. Wang, “The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies,” Dalton Trans. 44(13), 6242–6248 (2015).
[Crossref] [PubMed]

Chen, X.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

Chen, Z.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Cheng, L.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Cheng, Q.

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Ciszak, K.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Cong, T.

T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
[Crossref]

Cui, Y.

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

D’hooge, M.

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

Dai, Y.

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

Deng, R.

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

Dey, R.

A. Kumari, A. Pandey, R. Dey, and V. K. Rai, “Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3: Tm3+–Yb3+ phosphors,” RSC Advances 4(42), 21844–21851 (2014).
[Crossref]

Dhananjaya, N.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

Ding, M.

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Ding, Y.

T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
[Crossref]

Dravid, V. P.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Dziawa, P.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Elbaum, D.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Fan, R.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

Feng, L.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Feng, W.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
[Crossref] [PubMed]

Fronc, K.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Fu, H.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Fujii, M.

K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
[Crossref]

Gai, S.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Gnach, A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Gu, M.

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

Guan, H.

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

Guo, S.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Guo, X.

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

Han, T.

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

Hao, S.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

He, F.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Hölsä, J.

V. Kale, T. Soukka, J. Hölsä, and M. Lastusaari, “Enhancement of blue upconversion luminescence in hexagonal NaYF4: Yb, Tm by using K and Sc ions,” J. Nanopart. Res. 15(8), 1850 (2013).
[Crossref]

Hong, X.

T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
[Crossref]

Hou, Z.

Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
[Crossref] [PubMed]

Hua, R.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Huang, C.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
[Crossref] [PubMed]

Huang, L.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Huang, M.

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Huang, P.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Huang, Q.

Q. Huang, J. Yu, E. Ma, and K. Lin, “Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ Tridoped NaYF4,” J. Phys. Chem. C 114(10), 4719–4724 (2010).
[Crossref]

Huang, W.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Idris, N. M.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Imakita, K.

K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
[Crossref]

Jayakumar, M. K. G.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Ji, Z.

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Jia, Y.

Y. Jia, Y. Song, Y. Bai, and Y. Wang, “Upconverted photoluminescence in Ho3+ and Yb3+ codoped Gd2O3 nanocrystals with and without Li+ ions,” Luminescence 26(4), 259–263 (2011).
[Crossref] [PubMed]

Jiang, B.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Jiang, Z.

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

Kaczmarek, A. M.

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

Kale, V.

V. Kale, T. Soukka, J. Hölsä, and M. Lastusaari, “Enhancement of blue upconversion luminescence in hexagonal NaYF4: Yb, Tm by using K and Sc ions,” J. Nanopart. Res. 15(8), 1850 (2013).
[Crossref]

Kaliszewski, M.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Kaminska, I.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Kang, X.

Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
[Crossref] [PubMed]

Kim, B.-C.

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Kim, D.-K.

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Kim, S. J.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Kim, T. J.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Kong, X.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Kopczynski, K.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Kumari, A.

A. Kumari, A. Pandey, R. Dey, and V. K. Rai, “Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3: Tm3+–Yb3+ phosphors,” RSC Advances 4(42), 21844–21851 (2014).
[Crossref]

Lapinski, M.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Lastusaari, M.

V. Kale, T. Soukka, J. Hölsä, and M. Lastusaari, “Enhancement of blue upconversion luminescence in hexagonal NaYF4: Yb, Tm by using K and Sc ions,” J. Nanopart. Res. 15(8), 1850 (2013).
[Crossref]

Lee, G. H.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Lei, L.

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

Li, C.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Li, F.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
[Crossref] [PubMed]

Li, H.

H. Li, S. Song, W. Wang, and K. Chen, “In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light,” Dalton Trans. 44(36), 16081–16090 (2015).
[Crossref] [PubMed]

Li, R.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Li, X.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
[Crossref] [PubMed]

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Li, Y.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
[Crossref]

Liang, H.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Liang, Y.

X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
[Crossref]

Liang, Z.

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

Lin, J.

Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
[Crossref] [PubMed]

Lin, K.

Q. Huang, J. Yu, E. Ma, and K. Lin, “Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ Tridoped NaYF4,” J. Phys. Chem. C 114(10), 4719–4724 (2010).
[Crossref]

Lipinski, T.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Liu, B.

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

Liu, H.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Liu, J.

T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
[Crossref]

Liu, K.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Liu, M.

X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
[Crossref]

Liu, S.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Liu, X.

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

L. Tu, X. Liu, F. Wu, and H. Zhang, “Excitation energy migration dynamics in upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1331–1345 (2015).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

Lu, C.

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Ma, E.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Q. Huang, J. Yu, E. Ma, and K. Lin, “Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ Tridoped NaYF4,” J. Phys. Chem. C 114(10), 4719–4724 (2010).
[Crossref]

Ma, X.

Q. Qiang, W. Chen, X. Ma, and Y. Wang, “The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies,” Dalton Trans. 44(13), 6242–6248 (2015).
[Crossref] [PubMed]

Mackowski, S.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Minikayev, R.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Mlynczak, J.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Moon, H.

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Mouawad, M.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Nagabhushana, B. M.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

Nagabhushana, H.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

Ni, C.

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

Ni, Y.

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Niu, N.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Pan, K.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Pan, Y.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Pandey, A.

A. Kumari, A. Pandey, R. Dey, and V. K. Rai, “Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3: Tm3+–Yb3+ phosphors,” RSC Advances 4(42), 21844–21851 (2014).
[Crossref]

Park, J.

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Park, J. A.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Paszkowicz, W.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Peng, L.

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

Piatkowski, D.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Qiang, Q.

Q. Qiang, W. Chen, X. Ma, and Y. Wang, “The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies,” Dalton Trans. 44(13), 6242–6248 (2015).
[Crossref] [PubMed]

Qin, W.

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

Qiu, H.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

Qu, Y.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Rai, V. K.

A. Kumari, A. Pandey, R. Dey, and V. K. Rai, “Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3: Tm3+–Yb3+ phosphors,” RSC Advances 4(42), 21844–21851 (2014).
[Crossref]

Rudraswamy, B.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

Rybka, J.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

Savic, A.

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

Shang, Y.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

Shao, W.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

Sheng, Y.

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

Shivakumara, C.

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

Siemiarczuk, A.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Sikora, B.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Sobczak, K.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Somesfalean, G.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Song, S.

H. Li, S. Song, W. Wang, and K. Chen, “In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light,” Dalton Trans. 44(36), 16081–16090 (2015).
[Crossref] [PubMed]

Song, Y.

Y. Jia, Y. Song, Y. Bai, and Y. Wang, “Upconverted photoluminescence in Ho3+ and Yb3+ codoped Gd2O3 nanocrystals with and without Li+ ions,” Luminescence 26(4), 259–263 (2011).
[Crossref] [PubMed]

Soukka, T.

V. Kale, T. Soukka, J. Hölsä, and M. Lastusaari, “Enhancement of blue upconversion luminescence in hexagonal NaYF4: Yb, Tm by using K and Sc ions,” J. Nanopart. Res. 15(8), 1850 (2013).
[Crossref]

Sowa, S.

K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
[Crossref]

Stepien, P.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Su, H.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Suh, K.-S.

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Sui, J.

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Sun, J.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Sun, Q.

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

Sun, Y.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
[Crossref] [PubMed]

Szewczyk, M.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Tian, B.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Tian, C.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Tian, L.

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

Tian, Y.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Tripp, C. P.

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

Tu, D.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Tu, L.

L. Tu, X. Liu, F. Wu, and H. Zhang, “Excitation energy migration dynamics in upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1331–1345 (2015).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Van Deun, R.

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

Van Driessche, I.

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

Van Hecke, K.

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

Wang, D.

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

Wang, F.

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

Wang, G.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Wang, H.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Wang, W.

H. Li, S. Song, W. Wang, and K. Chen, “In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light,” Dalton Trans. 44(36), 16081–16090 (2015).
[Crossref] [PubMed]

Wang, Y.

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

Q. Qiang, W. Chen, X. Ma, and Y. Wang, “The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies,” Dalton Trans. 44(13), 6242–6248 (2015).
[Crossref] [PubMed]

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

Y. Jia, Y. Song, Y. Bai, and Y. Wang, “Upconverted photoluminescence in Ho3+ and Yb3+ codoped Gd2O3 nanocrystals with and without Li+ ions,” Luminescence 26(4), 259–263 (2011).
[Crossref] [PubMed]

Wei, T.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Wlodarski, M.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Wojciechowski, T.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Wu, F.

L. Tu, X. Liu, F. Wu, and H. Zhang, “Excitation energy migration dynamics in upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1331–1345 (2015).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Wu, X.

X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
[Crossref]

Xiao, L.

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

Xie, X.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

Xu, C.

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

Xu, J.

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

Xu, S.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Xu, W.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Xu, Z.

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

Yamamoto, K.

K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
[Crossref]

Yang, B.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Yang, C.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

Yang, P.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
[Crossref] [PubMed]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Yin, S.

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Yu, H.

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Yu, J.

Q. Huang, J. Yu, E. Ma, and K. Lin, “Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ Tridoped NaYF4,” J. Phys. Chem. C 114(10), 4719–4724 (2010).
[Crossref]

Yu, N.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Yu, T.

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zaleszczyk, W.

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

Zeng, Q.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhang, D.

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

Zhang, F.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Zhang, H.

L. Tu, X. Liu, F. Wu, and H. Zhang, “Excitation energy migration dynamics in upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1331–1345 (2015).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhang, J.

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zhang, R.

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

Zhang, Y.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhang, Z.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Zhao, B.

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Zhao, C.

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhao, D.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Zhao, H.

T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
[Crossref]

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

Zhao, L.

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

Zhao, S.

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

Zheng, W.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Zheng, Y.

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zhong, H.

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zhong, J.

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

Zhou, S.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Zhou, W.

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

Zhu, H.

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Zou, H.

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Zhao, X. Xie, S. Xu, Y. Pan, B. Yang, S. Guo, T. Wei, H. Su, H. Wang, X. Chen, V. P. Dravid, L. Huang, and W. Huang, “Dravid, L. Huang and W. Huang, “From ScOOH to Sc2O3: phase control, luminescent properties, and applications,” Adv. Mater. 28(31), 6665–6671 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, “Doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers,” Angew. Chem. Int. Ed. 53(5), 1252–1257 (2014).
[Crossref]

Appl. Phys. Lett. (1)

J. Park, H. Moon, D.-K. Kim, S.-H. Byeon, B.-C. Kim, and K.-S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3: Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77(14), 2162–2164 (2000).
[Crossref]

Chem. Asian J. (1)

L. Lei, D. Chen, J. Xu, R. Zhang, and Y. Wang, “Highly Intensified Upconversion Luminescence of Ca2+ -Doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route,” Chem. Asian J. 9(3), 728–733 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (6)

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

L. Tu, X. Liu, F. Wu, and H. Zhang, “Excitation energy migration dynamics in upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1331–1345 (2015).
[Crossref] [PubMed]

X. Liu, R. Deng, Y. Zhang, Y. Wang, H. Chang, L. Huang, and X. Liu, “Probing the nature of upconversion nanocrystals: instrumentation matters,” Chem. Soc. Rev. 44(6), 1479–1508 (2015).
[Crossref] [PubMed]

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44(6), 1509–1525 (2015).
[Crossref] [PubMed]

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44(6), 1561–1584 (2015).
[Crossref] [PubMed]

CrystEngComm (2)

Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, “Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties,” CrystEngComm 13(17), 5480–5487 (2011).
[Crossref]

Dalton Trans. (4)

Q. Qiang, W. Chen, X. Ma, and Y. Wang, “The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies,” Dalton Trans. 44(13), 6242–6248 (2015).
[Crossref] [PubMed]

R. Van Deun, M. D’hooge, A. Savic, I. Van Driessche, K. Van Hecke, and A. M. Kaczmarek, “Influence of Y(3+), Gd(3+), and Lu(3+) co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles,” Dalton Trans. 44(42), 18418–18426 (2015).
[Crossref] [PubMed]

Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, and H. Fu, “Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.,” Dalton Trans. 42(22), 7971–7979 (2013).
[Crossref] [PubMed]

H. Li, S. Song, W. Wang, and K. Chen, “In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light,” Dalton Trans. 44(36), 16081–16090 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (3)

Z. Liang, Y. Cui, S. Zhao, L. Tian, J. Zhang, and Z. Xu, “The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb 3+, Er 3+ nanoparticles by codoping with K+ ions,” J. Alloys Compd. 610, 432–437 (2014).
[Crossref]

B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao, and R. Zhang, “Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3:Eu3+ phosphor,” J. Alloys Compd. 440(1-2), 341–345 (2007).
[Crossref]

N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R. P. S. Chakradhar, “Effect of Li+ ion on enhancement of photoluminescence in Gd2O3: Eu3+ nanophosphors prepared by combustion technique,” J. Alloys Compd. 509(5), 2368–2374 (2011).
[Crossref]

J. Appl. Phys. (1)

Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

J. Mater. Sci. (1)

X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li, “Preparation and photoluminescence properties of Y2O3: Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes,” J. Mater. Sci. 46(16), 5581–5586 (2011).
[Crossref]

J. Nanopart. Res. (1)

V. Kale, T. Soukka, J. Hölsä, and M. Lastusaari, “Enhancement of blue upconversion luminescence in hexagonal NaYF4: Yb, Tm by using K and Sc ions,” J. Nanopart. Res. 15(8), 1850 (2013).
[Crossref]

J. Phys. Chem. C (3)

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Q. Huang, J. Yu, E. Ma, and K. Lin, “Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ Tridoped NaYF4,” J. Phys. Chem. C 114(10), 4719–4724 (2010).
[Crossref]

K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, and K. Aoki, “Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap,” J. Phys. Chem. C 119(2), 1175–1179 (2015).
[Crossref]

J. Sol-Gel Sci,” Techn. (1)

L. Peng, M. Huang, S. Cao, B. Liu, T. Han, and C. Zhao, “Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals,” J. Sol-Gel Sci,” Techn. 78, 307–312 (2016).

Luminescence (1)

Y. Jia, Y. Song, Y. Bai, and Y. Wang, “Upconverted photoluminescence in Ho3+ and Yb3+ codoped Gd2O3 nanocrystals with and without Li+ ions,” Luminescence 26(4), 259–263 (2011).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

Q. Sun, H. Zhao, X. Chen, F. Wang, W. Cai, and Z. Jiang, “Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion,” Mater. Chem. Phys. 123(2-3), 806–810 (2010).
[Crossref]

Mater. Lett. (1)

T. Cong, Y. Ding, J. Liu, H. Zhao, and X. Hong, “Synthesis and optical properties of Zn2+ doped NaYF 4: Yb3+, Er3+ upconversion nanoparticles,” Mater. Lett. 165, 59–62 (2016).
[Crossref]

Nanoscale (2)

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (2)

H. Guan, Y. Sheng, C. Xu, Y. Dai, X. Xie, and H. Zou, “Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors,” Phys. Chem. Chem. Phys. 18(29), 19807–19819 (2016).
[Crossref] [PubMed]

Y. Zhang, X. Li, X. Kang, Z. Hou, and J. Lin, “Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals,” Phys. Chem. Chem. Phys. 16(22), 10779–10787 (2014).
[Crossref] [PubMed]

RSC Advances (4)

X. Guo, C. Chen, D. Zhang, C. P. Tripp, S. Yin, and W. Qin, “Photocatalysis of NaYF4:Yb, Er/CdSe composites under 1560 nm laser excitation,” RSC Advances 6(10), 8127–8133 (2016).
[Crossref]

S. Hao, W. Shao, H. Qiu, Y. Shang, R. Fan, X. Guo, L. Zhao, G. Chen, and C. Yang, “Tuning the size and upconversion emission of NaYF4: Yb3+/Pr3+ nanoparticles through Yb3+ doping,” RSC Advances 4(99), 56302–56306 (2014).
[Crossref]

I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, and D. Elbaum, “Upconverting/ magnetic: Gd2O3: (Er 3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping,” RSC Advances 5(95), 78361–78373 (2015).
[Crossref]

A. Kumari, A. Pandey, R. Dey, and V. K. Rai, “Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3: Tm3+–Yb3+ phosphors,” RSC Advances 4(42), 21844–21851 (2014).
[Crossref]

Sci. Rep. (2)

M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, “Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage,” Sci. Rep. 5, 12745 (2015).
[Crossref] [PubMed]

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

TEM images of (a) Gd2O3: Yb/Er (10/2 mol%) NCs; (b) Gd2O3: Yb/Er/Zn (10/2/10 mol%) NCs; (c) Gd2O3: Yb/Er/Li (10/2/10 mol%) NCs; (d) Gd2O3: Yb/Er/Zn/Li (10/2/2.5/10 mol%) NCs; (e) Gd2O3: Yb/Er/Zn/Li (10/2/10/2.5 mol%) NCs; (f) Crystal structure of Gd2O3.

Fig. 2
Fig. 2

XRD patterns and main diffraction peaks of (a) Gd2O3: Yb/Er/Zn (10/2/x mol%, x = 0, 2, 4, 6, 8, 10) NCs; (b) Gd2O3: Yb/Er/Li (10/2/x mol%, x = 0, 2, 4, 6, 8, 10) NCs; (c) Gd2O3: Yb/Er/Zn/Li (10/2/4/x mol%, x = 0, 0.5, 1.0, 1.5, 2.0, 2.5) NCs; (d) Gd2O3: Yb/Er/Li/Zn (10/2/4/x mol%, x = 0, 0.5, 1.0, 1.5, 2.0, 2.5) NCs.

Fig. 3
Fig. 3

Schematic illustration of lattice change induced by Zn2+ and Li+ inert ions single/co-doping.

Fig. 4
Fig. 4

(a) UC luminescence spectra of Gd2O3: Yb/Er/Zn (10/2/x mol%, x = 0, 2, 4, 6, 8, 10) NCs excited by 30 W/cm2 980 nm laser; (b) UC luminescence spectra of Gd2O3: Yb/Er/Li (10/2/x mol%, x = 0, 2, 4, 6, 8, 10) NCs excited by 30 W/cm2 980 nm laser; (c) The ratios of UC luminescence enhancement by doping different Zn2+ ion concentration in Gd2O3: Yb/Er (10/2 mol%) NCs; (d) The ratios of UC luminescence enhancement by doping different Li+ ion concentration in Gd2O3: Yb/Er (10/2 mol%) NCs.

Fig. 5
Fig. 5

(a) UC luminescence spectra of Gd2O3: Yb/Er/Zn/Li (10/2/4/x mol%, x = 0, 0.5, 1, 1.5, 2, 2.5) NCs excited by 30 W/cm2 980 nm laser; (b) UC luminescence spectra of Gd2O3: Yb/Er/Li/Zn (10/2/4/x mol%, x = 0, 0.5, 1, 1.5, 2, 2.5) NCs excited by 30 W/cm2 980 nm laser; (c) The ratios of UC luminescence enhancement by doping different concentration of Zn2+ ion in Gd2O3: Yb/Er/Zn (10/2/4 mol%) NCs; (d) The ratios of UC luminescence enhancement by doping different concentration of Li+ ion in Gd2O3: Yb/Er/Li (10/2/4 mol%) NCs.

Fig. 6
Fig. 6

(a) DC luminescence spectra of Gd2O3: Eu/Zn (5/x mol%, x = 0, 2, 4, 6, 8, 10) NCs excited by 269 nm laser; (b) DC luminescence spectra of Gd2O3: Eu/Li (5/x mol%, x = 0, 2, 4, 6, 8, 10) NCs excited by 269 nm laser; (c) The ratios of DC luminescence enhancement by doping different Zn2+ ion concentration in Gd2O3: Eu (10/2 mol%) NCs; (d) The ratios of DC luminescence enhancement by doping different Li+ ion concentration in Gd2O3: Eu (10/2 mol%) NCs; (e) DC luminescence excitation spectrum of Eu3+ ion monitored at 609 nm.

Fig. 7
Fig. 7

(a) DC luminescence spectra of Gd2O3: Eu/Zn/Li (5/2/x mol%, x = 0, 0.5, 1, 1.5, 2, 2.5) NCs excited by 269 nm; (b) DC luminescence spectra of Gd2O3: Eu/Li/Zn (5/4/x mol%, x = 0, 0.5, 1, 1.5, 2, 2.5) NCs excited by 269 nm; (c) The ratios of DC luminescence enhancement by doping different Li+ ion concentrations in Gd2O3: Eu/Zn (5/2 mol%) NCs; (d) The ratios of DC luminescence enhancement by doping different Zn2+ ion concentrations in Gd2O3: Eu/Li (5/4 mol%) NCs.

Fig. 8
Fig. 8

(a) Energy-level diagrams of Yb3+ and Er3+ ions, and possible UC processes excited by 980 nm laser; (b) Energy-level diagram of Eu3+ ion, and possible DC processes excited by 269 nm.

Metrics