Abstract

We demonstrate that the intensity of the band edge emission and lasing threshold from ZnO microstructures can be improved via the surface plasmon effect of Au nanoparticles. The near-band-edge emission can be enhanced by 11 fold and the defect-related emission is completely suppressed due to the electron transfer between the conduction band and defect levels through the localized surface plasmon resonance. The results suggest that Au nanoparticles can effectively enhance the lasing characteristic by turning down the lasing threshold, which is attributed to the resonance coupling between the surface plasmon and the optical transition in ZnO. In addition, the formation of superior scattering species by Au nanoparticles play another important role in the random lasing mechanism.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films

Xuehong Li, Yang Zhang, and Xijun Ren
Opt. Express 17(11) 8735-8740 (2009)

Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu
Opt. Express 23(12) 15565-15574 (2015)

Enhancement of ZnO photoluminescence by localized and propagating surface plasmons

B.J. Lawrie, R.F. Haglund, and R. Mu
Opt. Express 17(4) 2565-2572 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
    [Crossref] [PubMed]
  2. C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
    [Crossref]
  3. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
    [Crossref]
  4. M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
    [Crossref]
  5. A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
    [Crossref]
  6. J. J. Jiang, Y. B. Xie, Z. Y. Liu, X. M. Tang, X. J. Zhang, and Y. Y. Zhu, “Amplified spontaneous emission via the coupling between Fabry-Perot cavity and surface plasmon polariton modes,” Opt. Lett. 39(8), 2378–2381 (2014).
    [Crossref] [PubMed]
  7. C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
    [Crossref]
  8. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
    [Crossref] [PubMed]
  9. Y. Zhang, X. Li, and X. Ren, “Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films,” Opt. Express 17(11), 8735–8740 (2009).
    [Crossref] [PubMed]
  10. J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
    [Crossref] [PubMed]
  11. Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
    [Crossref]
  12. M. Mahanti and D. Basak, “Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer,” RSC Advances 4(30), 15466–15473 (2014).
    [Crossref]
  13. M. Mahanti and D. Basak, “Cu/ZnO nanorods’ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance,” J. Lumin. 145, 19–24 (2014).
    [Crossref]
  14. M. Mahanti and D. Basak, “Enhanced photoluminescence in Ag@SiO2 core–shell nanoparticles coated ZnO nanorods,” J. Lumin. 154, 535–540 (2014).
    [Crossref]
  15. Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
    [Crossref]
  16. Z. X. Chen, B. Y. Lai, J. M. Zhang, G. P. Wang, and S. Chu, “Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers,” Nanotechnology 25(29), 11– (2014).
    [Crossref]
  17. A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
    [Crossref]
  18. W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
    [Crossref]
  19. C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, “Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
    [Crossref]
  20. T. Nakamura, S. Sonoda, and S. Adachi, “Plasmonic control of ZnO random lasing characteristics,” Laser Phys. Lett. 11(1), 016004 (2014).
    [Crossref]
  21. N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).
    [Crossref] [PubMed]
  22. T. F. Dai, W. C. Hsu, and H. C. Hsu, “Improvement of photoluminescence and lasing properties in ZnO submicron spheres by elimination of surface-trapped state,” Opt. Express 22(22), 27169–27174 (2014).
    [Crossref] [PubMed]
  23. T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
    [Crossref]
  24. H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
    [Crossref]
  25. J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
    [Crossref]
  26. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
    [Crossref]
  27. K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, “Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles,” J. Appl. Phys. 113(3), 033512 (2013).
    [Crossref]
  28. S. Chen, X. Pan, H. He, W. Chen, C. Chen, W. Dai, H. Zhang, P. Ding, J. Huang, B. Lu, and Z. Ye, “Enhanced photoluminescence of nonpolar p-type ZnO film by surface plasmon resonance and electron transfer,” Opt. Lett. 40(4), 649–652 (2015).
    [Crossref] [PubMed]
  29. C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
    [Crossref] [PubMed]
  30. T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express 19(2), 467–475 (2011).
    [Crossref] [PubMed]

2015 (1)

2014 (10)

C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
[Crossref] [PubMed]

T. Nakamura, S. Sonoda, and S. Adachi, “Plasmonic control of ZnO random lasing characteristics,” Laser Phys. Lett. 11(1), 016004 (2014).
[Crossref]

T. F. Dai, W. C. Hsu, and H. C. Hsu, “Improvement of photoluminescence and lasing properties in ZnO submicron spheres by elimination of surface-trapped state,” Opt. Express 22(22), 27169–27174 (2014).
[Crossref] [PubMed]

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

J. J. Jiang, Y. B. Xie, Z. Y. Liu, X. M. Tang, X. J. Zhang, and Y. Y. Zhu, “Amplified spontaneous emission via the coupling between Fabry-Perot cavity and surface plasmon polariton modes,” Opt. Lett. 39(8), 2378–2381 (2014).
[Crossref] [PubMed]

M. Mahanti and D. Basak, “Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer,” RSC Advances 4(30), 15466–15473 (2014).
[Crossref]

M. Mahanti and D. Basak, “Cu/ZnO nanorods’ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance,” J. Lumin. 145, 19–24 (2014).
[Crossref]

M. Mahanti and D. Basak, “Enhanced photoluminescence in Ag@SiO2 core–shell nanoparticles coated ZnO nanorods,” J. Lumin. 154, 535–540 (2014).
[Crossref]

Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

2013 (2)

H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
[Crossref]

K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, “Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles,” J. Appl. Phys. 113(3), 033512 (2013).
[Crossref]

2012 (3)

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).
[Crossref] [PubMed]

C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, “Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

2011 (4)

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express 19(2), 467–475 (2011).
[Crossref] [PubMed]

2010 (2)

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

2009 (2)

2007 (2)

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
[Crossref]

2006 (2)

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
[Crossref] [PubMed]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

1996 (1)

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Abiyasa, A. P.

A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
[Crossref]

Adachi, S.

T. Nakamura, S. Sonoda, and S. Adachi, “Plasmonic control of ZnO random lasing characteristics,” Laser Phys. Lett. 11(1), 016004 (2014).
[Crossref]

T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express 19(2), 467–475 (2011).
[Crossref] [PubMed]

Basak, D.

M. Mahanti and D. Basak, “Enhanced photoluminescence in Ag@SiO2 core–shell nanoparticles coated ZnO nanorods,” J. Lumin. 154, 535–540 (2014).
[Crossref]

M. Mahanti and D. Basak, “Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer,” RSC Advances 4(30), 15466–15473 (2014).
[Crossref]

M. Mahanti and D. Basak, “Cu/ZnO nanorods’ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance,” J. Lumin. 145, 19–24 (2014).
[Crossref]

Cai, W.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Chao, T. Y.

C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
[Crossref] [PubMed]

Chen, C.

Chen, S.

Chen, W.

Chen, Y. F.

C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, “Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
[Crossref] [PubMed]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Cheng, C. L.

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
[Crossref] [PubMed]

Cheng, C. W.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Chiu, Y. F.

C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
[Crossref] [PubMed]

Chou, Y. Y.

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Cui, Y.

Dai, J.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Dai, T. F.

T. F. Dai, W. C. Hsu, and H. C. Hsu, “Improvement of photoluminescence and lasing properties in ZnO submicron spheres by elimination of surface-trapped state,” Opt. Express 22(22), 27169–27174 (2014).
[Crossref] [PubMed]

H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
[Crossref]

Dai, W.

Ding, P.

Duan, G.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Eriksson, M. O.

H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
[Crossref]

Fan, H. J.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Fan, X.

Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
[Crossref]

Fang, Y. J.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Gao, H.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

He, H.

Holtz, P. O.

H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
[Crossref]

Hosaka, T.

Hsu, H. C.

T. F. Dai, W. C. Hsu, and H. C. Hsu, “Improvement of photoluminescence and lasing properties in ZnO submicron spheres by elimination of surface-trapped state,” Opt. Express 22(22), 27169–27174 (2014).
[Crossref] [PubMed]

C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
[Crossref] [PubMed]

H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
[Crossref]

Hsu, W. C.

Hu, Z.

Huan, C. H. A.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Huang, D.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Huang, H. Y.

H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
[Crossref]

Huang, J.

Huang, L. L.

Janotti, A.

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Jiang, J. J.

Jokela, S. J.

M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Krishnan, R.

K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, “Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles,” J. Appl. Phys. 113(3), 033512 (2013).
[Crossref]

Lau, S. P.

A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
[Crossref]

Leong, E. S. P.

A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
[Crossref]

Li, J.

Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Li, J. T.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Li, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Li, X.

Li, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Lin, H. Y.

C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, “Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
[Crossref] [PubMed]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Lin, J. M.

C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, “Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Lin, Y.

Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
[Crossref]

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, B.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Liu, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, Z. Y.

Lu, B.

Lu, C. H.

C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
[Crossref] [PubMed]

Lu, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Mahanti, M.

M. Mahanti and D. Basak, “Enhanced photoluminescence in Ag@SiO2 core–shell nanoparticles coated ZnO nanorods,” J. Lumin. 154, 535–540 (2014).
[Crossref]

M. Mahanti and D. Basak, “Cu/ZnO nanorods’ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance,” J. Lumin. 145, 19–24 (2014).
[Crossref]

M. Mahanti and D. Basak, “Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer,” RSC Advances 4(30), 15466–15473 (2014).
[Crossref]

McCluskey, M. D.

M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

Nair, K. G. M.

K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, “Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles,” J. Appl. Phys. 113(3), 033512 (2013).
[Crossref]

Nakamura, T.

T. Nakamura, S. Sonoda, and S. Adachi, “Plasmonic control of ZnO random lasing characteristics,” Laser Phys. Lett. 11(1), 016004 (2014).
[Crossref]

T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express 19(2), 467–475 (2011).
[Crossref] [PubMed]

Pan, X.

Pandya, D. K.

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Panigrahi, B. K.

K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, “Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles,” J. Appl. Phys. 113(3), 033512 (2013).
[Crossref]

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Ren, X.

Saravanan, K.

K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, “Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles,” J. Appl. Phys. 113(3), 033512 (2013).
[Crossref]

Seager, C. H.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Sha, J.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Shi, Z. L.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Sie, E. J.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Singh, R.

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Singh, T.

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Sonoda, S.

T. Nakamura, S. Sonoda, and S. Adachi, “Plasmonic control of ZnO random lasing characteristics,” Laser Phys. Lett. 11(1), 016004 (2014).
[Crossref]

Sum, T. C.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Sun, H. D.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Sun, J.

Tallant, D. R.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Tang, W.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Tang, X. M.

Tsen, K. T.

Tseng, S. Y.

C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
[Crossref] [PubMed]

Van de Walle, C. G.

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Vanheusden, K.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Voigt, J. A.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Wan, Y. T.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Wang, B.

Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
[Crossref]

Wang, C. S.

C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, “Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Wang, S.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Wang, W.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Wang, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Wang, Y. W.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Wang, Z. L.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Warren, W. L.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Wu, J.

Wu, L.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Xia, W. W.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Xie, Y. B.

Xu, C.

Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Xu, C. X.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Xu, L.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Xu, N.

Xu, X.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Yang, H. Y.

A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
[Crossref]

Yang, S.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Ye, Z.

Yu, S. F.

A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
[Crossref]

Yu, W.

Zeng, H.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Zhang, H.

Zhang, X.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Zhang, X. J.

Zhang, Y.

Zhao, C.

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhou, W.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhu, G. P.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Zhu, G. Y.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Zhu, Y. Y.

ACS Appl. Mater. Interfaces (1)

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Appl. Phys. Express (1)

C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, “Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

Appl. Phys. Lett. (6)

Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, “Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower,” Appl. Phys. Lett. 105(14), 142107 (2014).
[Crossref]

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90(23), 231106 (2007).
[Crossref]

H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, “Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method,” Appl. Phys. Lett. 102(1), 013109 (2013).
[Crossref]

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

CrystEngComm (1)

W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires,” CrystEngComm 13(7), 2336–2339 (2011).
[Crossref]

J. Appl. Phys. (2)

K. Saravanan, B. K. Panigrahi, R. Krishnan, and K. G. M. Nair, “Surface plasmon enhanced photoluminescence and Raman scattering of ultra thin ZnO-Au hybrid nanoparticles,” J. Appl. Phys. 113(3), 033512 (2013).
[Crossref]

M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

J. Lumin. (2)

M. Mahanti and D. Basak, “Cu/ZnO nanorods’ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance,” J. Lumin. 145, 19–24 (2014).
[Crossref]

M. Mahanti and D. Basak, “Enhanced photoluminescence in Ag@SiO2 core–shell nanoparticles coated ZnO nanorods,” J. Lumin. 154, 535–540 (2014).
[Crossref]

Laser Photonics Rev. (1)

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Laser Phys. Lett. (1)

T. Nakamura, S. Sonoda, and S. Adachi, “Plasmonic control of ZnO random lasing characteristics,” Laser Phys. Lett. 11(1), 016004 (2014).
[Crossref]

Nanoscale Res. Lett. (1)

C. H. Lu, T. Y. Chao, Y. F. Chiu, S. Y. Tseng, and H. C. Hsu, “Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn,” Nanoscale Res. Lett. 9(1), 178 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Nat. Nanotechnol. (1)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

RSC Advances (1)

M. Mahanti and D. Basak, “Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer,” RSC Advances 4(30), 15466–15473 (2014).
[Crossref]

Thin Solid Films (1)

T. Singh, D. K. Pandya, and R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520(14), 4646–4649 (2012).
[Crossref]

Other (1)

Z. X. Chen, B. Y. Lai, J. M. Zhang, G. P. Wang, and S. Chu, “Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers,” Nanotechnology 25(29), 11– (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) XRD spectra of the NP-Au/ZnO s and pure ZnO microstructure. SEM image of (b) bare ZnO submicron spheres and (c) ZnO with Au coating by DC sputter. TEM image of ZnO submicron spheres coated (d) 30-s and (e) 100-s Au nanoparticles.

Fig. 2
Fig. 2

(a) Room temperature PL measurement of ZnO submicron spheres without and with different Au coating time. The inset shows the enlarged view of the visible band emission (b) The plot of the enhancement ratio of UV peak intensities as a function of the deposition time of Au.

Fig. 3
Fig. 3

The schematic resonant coupling between bandgap of the ZnO and surface plasmon resonance of Au, and electron transfer between the defect level and the Fermi level of the ZnO.

Fig. 4
Fig. 4

(a) The lasing emission spectra of ZnO submicron spheres with Au coating time 100s. The evolution of the emission spectra as the excitation power density is increased from 0.31 to 0.52 MW/cm2. The inset of Fig. 4(a) shows the emission peak intensity against with the ZnO microstructures coated 100-s Au nanoparticles. (b) The variation of the lasing threshold against with the different thickness of Au-coated ZnO submicron spheres. (c) The lasing characteristics of the lasing threshold density and the relative slope efficiency.