Abstract

Photo thermal refractive glasses of the type Na2O-SiO2-Al2O3-K2O-CaO-CaF2-ZnO doped with CeO2, Ag2O, SnO2, Sb2O3 were prepared using different concentrations of KBr. A UV irradiation followed by a thermal treatment leads to the formation of Ag-nanoparticles, indicated by the appearance of a plasmon resonance peak. This optical resonance position shifts with increasing KBr concentrations to higher wavelengths caused by the formation of an AgBr shell. The Mie theory with the aid of the optical dispersion of AgBr together with the measured dispersion of the used glasses was successfully applied to describe the optical relation of particle size and AgBr core shell thickness within the given glass. The results were compared with UV-vis-NIR spectroscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photo induced crystallization of CaF2 from a Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glass

Martina Stoica, Guilherme Nunes Braga Maurício de Macedo, and Christian Rüssel
Opt. Mater. Express 4(8) 1574-1585 (2014)

Bromide photo-thermo-refractive glass for volume Bragg gratings and waveguide structure recording

Victor Dubrovin, Nikolay Nikonorov, and Alexander Ignatiev
Opt. Mater. Express 7(7) 2280-2292 (2017)

Chloride photo-thermo-refractive glasses

Victor D. Dubrovin, Alexander I. Ignatiev, and Nikolay V. Nikonorov
Opt. Mater. Express 6(5) 1701-1713 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-VCH, 2011).
  2. F. Gonella, “Silver doping of glasses,” Ceram. Int. 41(5), 6693–6701 (2015).
  3. U. Kreibig, “Small Silver Particles in Photosensitive Glass - Their Nucleation and Growth,” Appl. Phys. (Berl.) 10(3), 255–264 (1976).
  4. S. D. Stookey, “Photosensitive Glass - a New Photographic Medium,” Ind. Eng. Chem. 41(4), 856–861 (1949).
  5. V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).
  6. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).
  7. L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).
  8. M. Stoica, G. N. B. M. de Macedo, and C. Rüssel, “Photo induced crystallization of CaF2 from a Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glass,” Opt. Mater. Express 4(8), 1574–1585 (2014).
  9. W. A. Weyl, Coloured Glasses (The Society of Glass Technology, 1951).
  10. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  11. D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,” Physica B 337(1–4), 64–68 (2003).
  12. A. P. Nacharov, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses,” Glass Phys. Chem. 34(6), 693–699 (2008).
  13. J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 425–430 (2008).
  14. L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).
  15. J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).
  16. N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).
  17. V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate glasses activated by rare-earth ions and AgBr,” Glass Phys. Chem. 38(4), 366–372 (2012).
  18. M. Stoica, A. Herrmann, J. Hein, and C. Rüssel, “UV-vis spectroscopic studies of a CaF2 Photo-Thermo-Refractive Glass,” Opt. Mater. 62, 424–432 (2016).
  19. S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).
  20. P. Laven, “Simulation of rainbows, coronas and glories using Mie theory and the Debye series,” J. Quant. Spectrosc. Ra. 89(1–4), 257–269 (2004).
  21. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
  22. H. Schröter, “On the refractive indices of some heavy-metal halides in the visible and calculation of interpolation formulas for dispersion,” Z. Phys. 67(1,2), 24–36 (1931).
  23. M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).
  24. U. Kreibig and P. Zacharia, “Surface Plasma Resonances in Small Spherical Silver and Gold Particles,” Z. Phys. 231(2), 128–143 (1970).
  25. E. I. Panysheva, I. V. Tunimanova, and V. A. Tsekhomskii, “The influence of the Matrix Composition of a Polychromatic Glass on its Properties,” Fiz. Khim. Stekla 17(6), 891–989 (1991).

2017 (1)

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

2016 (1)

M. Stoica, A. Herrmann, J. Hein, and C. Rüssel, “UV-vis spectroscopic studies of a CaF2 Photo-Thermo-Refractive Glass,” Opt. Mater. 62, 424–432 (2016).

2015 (1)

F. Gonella, “Silver doping of glasses,” Ceram. Int. 41(5), 6693–6701 (2015).

2014 (1)

2012 (1)

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate glasses activated by rare-earth ions and AgBr,” Glass Phys. Chem. 38(4), 366–372 (2012).

2009 (1)

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).

2008 (3)

A. P. Nacharov, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses,” Glass Phys. Chem. 34(6), 693–699 (2008).

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 425–430 (2008).

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).

2007 (1)

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).

2004 (1)

P. Laven, “Simulation of rainbows, coronas and glories using Mie theory and the Debye series,” J. Quant. Spectrosc. Ra. 89(1–4), 257–269 (2004).

2003 (1)

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,” Physica B 337(1–4), 64–68 (2003).

1992 (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

1991 (1)

E. I. Panysheva, I. V. Tunimanova, and V. A. Tsekhomskii, “The influence of the Matrix Composition of a Polychromatic Glass on its Properties,” Fiz. Khim. Stekla 17(6), 891–989 (1991).

1990 (1)

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

1989 (1)

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

1976 (1)

U. Kreibig, “Small Silver Particles in Photosensitive Glass - Their Nucleation and Growth,” Appl. Phys. (Berl.) 10(3), 255–264 (1976).

1973 (1)

S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

1970 (1)

U. Kreibig and P. Zacharia, “Surface Plasma Resonances in Small Spherical Silver and Gold Particles,” Z. Phys. 231(2), 128–143 (1970).

1949 (1)

S. D. Stookey, “Photosensitive Glass - a New Photographic Medium,” Ind. Eng. Chem. 41(4), 856–861 (1949).

Aseev, V. A.

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate glasses activated by rare-earth ions and AgBr,” Glass Phys. Chem. 38(4), 366–372 (2012).

Bocker, C.

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

Borgman, V. A.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

Burdaev, P. A.

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate glasses activated by rare-earth ions and AgBr,” Glass Phys. Chem. 38(4), 366–372 (2012).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

de Macedo, G. N. B. M.

Glebov, L. B.

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 425–430 (2008).

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

Glebova, L.

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 425–430 (2008).

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).

Gonella, F.

F. Gonella, “Silver doping of glasses,” Ceram. Int. 41(5), 6693–6701 (2015).

Hein, J.

M. Stoica, A. Herrmann, J. Hein, and C. Rüssel, “UV-vis spectroscopic studies of a CaF2 Photo-Thermo-Refractive Glass,” Opt. Mater. 62, 424–432 (2016).

Herrmann, A.

M. Stoica, A. Herrmann, J. Hein, and C. Rüssel, “UV-vis spectroscopic studies of a CaF2 Photo-Thermo-Refractive Glass,” Opt. Mater. 62, 424–432 (2016).

Höche, T.

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Klimov, M.

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).

Kolobkova, E. V.

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate glasses activated by rare-earth ions and AgBr,” Glass Phys. Chem. 38(4), 366–372 (2012).

Kracker, M.

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

Kreibig, U.

U. Kreibig, “Small Silver Particles in Photosensitive Glass - Their Nucleation and Growth,” Appl. Phys. (Berl.) 10(3), 255–264 (1976).

U. Kreibig and P. Zacharia, “Surface Plasma Resonances in Small Spherical Silver and Gold Particles,” Z. Phys. 231(2), 128–143 (1970).

Laven, P.

P. Laven, “Simulation of rainbows, coronas and glories using Mie theory and the Debye series,” J. Quant. Spectrosc. Ra. 89(1–4), 257–269 (2004).

Lazareva, K. E.

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).

Lumeau, J.

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 425–430 (2008).

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).

Manikandan, D.

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,” Physica B 337(1–4), 64–68 (2003).

Mohan, S.

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,” Physica B 337(1–4), 64–68 (2003).

Nacharov, A. P.

A. P. Nacharov, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses,” Glass Phys. Chem. 34(6), 693–699 (2008).

Nair, K. G. M.

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,” Physica B 337(1–4), 64–68 (2003).

Nikonorov, N. V.

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate glasses activated by rare-earth ions and AgBr,” Glass Phys. Chem. 38(4), 366–372 (2012).

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).

A. P. Nacharov, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses,” Glass Phys. Chem. 34(6), 693–699 (2008).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

Panysheva, E. I.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

E. I. Panysheva, I. V. Tunimanova, and V. A. Tsekhomskii, “The influence of the Matrix Composition of a Polychromatic Glass on its Properties,” Fiz. Khim. Stekla 17(6), 891–989 (1991).

Panysheva, Y. I.

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

Patzig, C.

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

Petrovskii, G. T.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

Rüssel, C.

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

M. Stoica, A. Herrmann, J. Hein, and C. Rüssel, “UV-vis spectroscopic studies of a CaF2 Photo-Thermo-Refractive Glass,” Opt. Mater. 62, 424–432 (2016).

M. Stoica, G. N. B. M. de Macedo, and C. Rüssel, “Photo induced crystallization of CaF2 from a Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glass,” Opt. Mater. Express 4(8), 1574–1585 (2014).

Savvin, V. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

Sidorov, A. I.

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).

A. P. Nacharov, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses,” Glass Phys. Chem. 34(6), 693–699 (2008).

Sinitskii, A.

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).

Stoica, M.

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

M. Stoica, A. Herrmann, J. Hein, and C. Rüssel, “UV-vis spectroscopic studies of a CaF2 Photo-Thermo-Refractive Glass,” Opt. Mater. 62, 424–432 (2016).

M. Stoica, G. N. B. M. de Macedo, and C. Rüssel, “Photo induced crystallization of CaF2 from a Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glass,” Opt. Mater. Express 4(8), 1574–1585 (2014).

Stookey, S. D.

S. D. Stookey, “Photosensitive Glass - a New Photographic Medium,” Ind. Eng. Chem. 41(4), 856–861 (1949).

Tsekhomskii, V. A.

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).

A. P. Nacharov, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses,” Glass Phys. Chem. 34(6), 693–699 (2008).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

E. I. Panysheva, I. V. Tunimanova, and V. A. Tsekhomskii, “The influence of the Matrix Composition of a Polychromatic Glass on its Properties,” Fiz. Khim. Stekla 17(6), 891–989 (1991).

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

Tsvetkov, A. D.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

Tunimanova, I. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

E. I. Panysheva, I. V. Tunimanova, and V. A. Tsekhomskii, “The influence of the Matrix Composition of a Polychromatic Glass on its Properties,” Fiz. Khim. Stekla 17(6), 891–989 (1991).

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

Wemple, S. H.

S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).

Wisniewski, W.

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

Zacharia, P.

U. Kreibig and P. Zacharia, “Surface Plasma Resonances in Small Spherical Silver and Gold Particles,” Z. Phys. 231(2), 128–143 (1970).

Zanotto, E. D.

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).

Appl. Phys. (Berl.) (1)

U. Kreibig, “Small Silver Particles in Photosensitive Glass - Their Nucleation and Growth,” Appl. Phys. (Berl.) 10(3), 255–264 (1976).

Ceram. Int. (1)

F. Gonella, “Silver doping of glasses,” Ceram. Int. 41(5), 6693–6701 (2015).

Dokl. Akad. Nauk SSSR (2)

L. B. Glebov, N. V. Nikonorov, Y. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “Multichromatic Glasses - a New Material for Recording of Volumetric Phase Holograms,” Dokl. Akad. Nauk SSSR 314(4), 849–853 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermorefractive Effect in Silicate-Glasses,” Dokl. Akad. Nauk SSSR 309(2), 336–339 (1989).

Fiz. Khim. Stekla (1)

E. I. Panysheva, I. V. Tunimanova, and V. A. Tsekhomskii, “The influence of the Matrix Composition of a Polychromatic Glass on its Properties,” Fiz. Khim. Stekla 17(6), 891–989 (1991).

Glass Phys. Chem. (2)

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate glasses activated by rare-earth ions and AgBr,” Glass Phys. Chem. 38(4), 366–372 (2012).

A. P. Nacharov, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses,” Glass Phys. Chem. 34(6), 693–699 (2008).

Ind. Eng. Chem. (1)

S. D. Stookey, “Photosensitive Glass - a New Photographic Medium,” Ind. Eng. Chem. 41(4), 856–861 (1949).

J. Mater. Sci. (1)

M. Stoica, C. Patzig, C. Bocker, W. Wisniewski, M. Kracker, T. Höche, and C. Rüssel, “Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O-K2O-CaO-CaF2-Al2O3-ZnO-SiO2 glass,” J. Mater. Sci. 52(23), 13390–13401 (2017).

J. Non-Cryst. Solids, (2)

J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 425–430 (2008).

L. Glebova, J. Lumeau, M. Klimov, E. D. Zanotto, and L. B. Glebov, “Role of bromine on the thermal and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids, 354(2-9), 456–461 (2008).

J. Quant. Spectrosc. Ra. (1)

P. Laven, “Simulation of rainbows, coronas and glories using Mie theory and the Debye series,” J. Quant. Spectrosc. Ra. 89(1–4), 257–269 (2004).

Opt. Mater. (1)

M. Stoica, A. Herrmann, J. Hein, and C. Rüssel, “UV-vis spectroscopic studies of a CaF2 Photo-Thermo-Refractive Glass,” Opt. Mater. 62, 424–432 (2016).

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107(5), 705–707 (2009).

Opt. Spektrosk. (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, “New Potentialities of Photosensitive Glasses for Volume Phase Hologram Recording,” Opt. Spektrosk. 73(2), 404–412 (1992).

Phys. Chem. Glasses-B (1)

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass,” Phys. Chem. Glasses-B 48(4), 281–284 (2007).

Phys. Rev. B (2)

S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Physica B (1)

D. Manikandan, S. Mohan, and K. G. M. Nair, “Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory,” Physica B 337(1–4), 64–68 (2003).

Z. Phys. (1)

U. Kreibig and P. Zacharia, “Surface Plasma Resonances in Small Spherical Silver and Gold Particles,” Z. Phys. 231(2), 128–143 (1970).

Other (4)

H. Schröter, “On the refractive indices of some heavy-metal halides in the visible and calculation of interpolation formulas for dispersion,” Z. Phys. 67(1,2), 24–36 (1931).

W. A. Weyl, Coloured Glasses (The Society of Glass Technology, 1951).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-VCH, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparison of Ag plasmon resonance absorption band maximum wavelengths for: ▼ samples irradiated (180 min, Xe lamp) and heat treated at temperatures of 450 and 530 °C for 1 h, ■ samples irradiated at respective time and heat treated at 530 °C for 1 h.
Fig. 2
Fig. 2 Ag plasmon resonance absorption band intensity vs. irradiation time; samples irradiated and heat treated at 530 °C for 1 h.
Fig. 3
Fig. 3 Simulated plasmon resonance peak positions for a single Ag particle in the glass matrix containing 0 mol %, 1 mol % or 2 mol % KBr, in the initial batch composition.
Fig. 4
Fig. 4 left: UV-vis absorption spectra of native glass samples and respective irradiated, heat treated samples with different bromide concentrations; right: plasmon resonance peak wavelength position of irradiated and heat treated samples vs. measured bromide concentration (XRF- analyses) of respective samples.
Fig. 5
Fig. 5 Simulated plasmon resonance peak positions for single Ag particle with different diameters surrounded by a dielectric AgBr shell of different thickness; in the glass matrix of the current system.

Tables (1)

Tables Icon

Table 1 Comparison of nominal and measured Br concentration of the PTR glasses

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 n 2 ( E )1 = E 0 E d 1 E 0 E d * E 2

Metrics