Abstract

Spectroscopic properties of Pr3+ and Er3+ -doped KPb2Br5 crystals were investigated for possible applications in eye-safe lasers as well as Ce3+-doped KPb2Cl5 and Eu2+-doped KPb2Cl5/KPb2Br5 for potential radiation detectors. The studied materials were synthesized through careful purification of starting materials including multi-pass zone-refinement and halogenation. The growth of the purified materials was then carried out through the vertical or horizontal Bridgman technique. Under resonant excitation, infrared (IR) emissions at ~1.5 μm and ~1.6 μm were observed from Er:KPb2Br5 and Pr:KPb2Br5 corresponding to the 4f-4f transitions of 4I13/24I15/2 and 3F4,3F33H4, respectively. Emission characteristics of the ~1.5 μm Er3+ and ~1.6 μm Pr3+ transitions including IR to visible upconversion emission studies were also discussed. Under xenon lamp excitation, spectroscopic results showed allowed 5d-4f Ce3+ emission centered at ~375 nm in Ce3+-doped KPb2Cl5. Fast photoluminescence decay time of ~30-50 ns was attained from Ce:KPb2Cl5, while X-ray excited emission at ~530 nm appeared to originate from the host KPb2Cl5 crystal. In addition, a commercial Ce:YAP (yttrium aluminum perovskite, YAlO3) crystal was included in this study for comparison. Eu2+ 5d-4f emissions were not observed from Eu2+-doped KPb2Cl5 and KPb2Br5 crystals.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared to visible upconversion of Nd3+ ions in KPb2Br5 low phonon crystal

Rolindes Balda, Joaquín Fernändez, Ei Ei Nyein, and Uwe Hömmerich
Opt. Express 14(9) 3993-4004 (2006)

Optical properties of KPb2Cl5 and RbPb2Cl5 single crystals in the far ultraviolet spectral region

Igor N. Ogorodnikov, Natalia S. Bastrikova, Vladimir A. Pustovarov, and Lyudmila I. Isaenko
J. Opt. Soc. Am. B 31(8) 1935-1941 (2014)

Mid-infrared luminescence properties of Dy-doped silver halide crystals

Irena Shafir, Ariel Nause, Lev Nagli, Michael Rosenbluh, and Abraham Katzir
Appl. Opt. 50(11) 1625-1630 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).
  2. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
  3. A. A. Kaminskii, [Crystalline lasers: Physical processes and operating schemes], CRC press, New York (1996).
  4. L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).
  5. L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).
  6. M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100, 35–45 (2002).
  7. K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).
  8. A. Ferrier, M. Velazquez, J. L. Doualan, and R. J. Moncorge, “Midinfrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513 (2008).
  9. A. G. Okhrichuk, L. N. Botvina, E. M. Dianova, N. V. Lichkova, V. Zavgorodnev, and A. V. Shestakov, “Upconversion processes accompanying the 2.5 um oscillation in the RbPb2Cl5: Pr3+ crystal,” Advanced Solid State Laser Conference (Optical Society of America), WB3 (2007).
  10. U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).
  11. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
  12. N. Ter-Gabrielyan, L. D. Merkle, M. Dubinskii, E.R. Kupp, and G. L. Messing, “Efficiently resonantly-pumped eye-safe composite ceramic Er:YAG laser,” Advanced Solid-State Photonics, Technical digest, paper AWB1 (2010).
  13. R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
  14. A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).
  15. O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).
  16. E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).
  17. L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).
  18. S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties of Eu-doped SrF2 single crystals,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9, 2275–2278 (2012).
  19. O. V. Uche, E. I. Felix, and O. U. Rose, “A study of the optical properties of undoped and potash doped lead chloride crystal in silica gel,” Adv. Appl. Sci. Res. 3, 103–109 (2012).
  20. A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).
  21. M. Velazquez, A. Ferrier, J. L. Doualan, and R. Moncorge, “Rare-earth doped low phonon energy halide crystals for mid-infrared laser sources, solid state laser,” Prof. Amin Al-Khursan (Ed.) (2012).
  22. M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
    [PubMed]
  23. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
    [PubMed]
  24. R. Balda, A. J. Garcia-Adeva, M. Voda, and, J. Fernandez, “Upconversion processes in Er3+ doped KPb2Cl5,” Phys. Rev.B 69, 205203–1 - 205203–8 (2004).
  25. A. Ferrier, M. Velazquez, J. L. Doualan, and R. Moncorge, “Energy level and excited state absorption properties of Er3+ doped KPb2Cl5,” J. Opt. Soc. Am. B 9, 2526 (2007).
  26. S. R. Lüthi, M. Pollnau, and H. U. Güdel, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Lu2I9 excited 1.54 µm,” Phys. Rev. B 60, 162–178 (1999).
  27. R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Upconversion and excited state absorption in the lower levels of Er:KPb2Cl5,” Opt. Mater. 30, 827–834 (2008).
  28. A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).
  29. C. W. E. Van Eijk, P. Dorenbos, and R. Visser, “Nd3+ and Pr3+ doped inorganic scintillators,” IEEE Trans. Nucl. Sci. 41, 738 (1994).
  30. P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).
  31. E. Brown, A. G. Bluiett, U. Hommerich, and S. B. Trivedi, “Optical properties of Pr3+-, Ce3+- and Eu2+-doped ternary lead halides,” Proc. of SPIE 9359, 93591U 1–13 (2015).
  32. P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91, 155–176 (2000).
  33. K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).
  34. R.-Y. Zhu, “Precision crystal calorimeters in high energy physics: past, present and future,” Proc. of SPIE Vol. 7079, 70790W 1–17 (2008).
  35. J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).
  36. J. T. Kobayasi, S. Mroczkowski, J. Owen, and L. H. Brixner, “Fluorescence lifetime and quantum efficiency for 5d-4f transitions in Eu2+ doped chloride and fluoride crystals,” J. Lumin. 21, 247–257 (1980).
  37. J. Selling, M. D. Birowosuto, P. Dorenbos, and S. Schweizer, “Europium-doped barium halide scintillators for x-ray and gamma-ray detectors,” J. Appl. Phys. 101, 034901 (2007).
  38. J. K. Lawson and S. A. Payne, “Excited-state absorption of Eu2+-doped materials,” Phys. Rev. B Condens. Matter 47(21), 14003–14010 (1993).
    [PubMed]
  39. K. Winskiewski, S. Mahlik, M. Grinberg, and H. J. Seo, “Influence of high hydrostatic pressure on Eu2+-luminescence in KMgF3:Eu2+ crystal,” J. Lumin. 131, 306–309 (2011).

2015 (1)

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

2013 (2)

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

2012 (2)

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties of Eu-doped SrF2 single crystals,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9, 2275–2278 (2012).

O. V. Uche, E. I. Felix, and O. U. Rose, “A study of the optical properties of undoped and potash doped lead chloride crystal in silica gel,” Adv. Appl. Sci. Res. 3, 103–109 (2012).

2011 (1)

K. Winskiewski, S. Mahlik, M. Grinberg, and H. J. Seo, “Influence of high hydrostatic pressure on Eu2+-luminescence in KMgF3:Eu2+ crystal,” J. Lumin. 131, 306–309 (2011).

2010 (1)

2009 (1)

U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).

2008 (3)

A. Ferrier, M. Velazquez, J. L. Doualan, and R. J. Moncorge, “Midinfrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513 (2008).

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Upconversion and excited state absorption in the lower levels of Er:KPb2Cl5,” Opt. Mater. 30, 827–834 (2008).

2007 (2)

J. Selling, M. D. Birowosuto, P. Dorenbos, and S. Schweizer, “Europium-doped barium halide scintillators for x-ray and gamma-ray detectors,” J. Appl. Phys. 101, 034901 (2007).

A. Ferrier, M. Velazquez, J. L. Doualan, and R. Moncorge, “Energy level and excited state absorption properties of Er3+ doped KPb2Cl5,” J. Opt. Soc. Am. B 9, 2526 (2007).

2006 (2)

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

2005 (2)

A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

2004 (1)

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

2003 (1)

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).

2002 (1)

M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100, 35–45 (2002).

2001 (1)

E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).

2000 (1)

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91, 155–176 (2000).

1999 (2)

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

S. R. Lüthi, M. Pollnau, and H. U. Güdel, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Lu2I9 excited 1.54 µm,” Phys. Rev. B 60, 162–178 (1999).

1996 (2)

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).

1994 (2)

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[PubMed]

C. W. E. Van Eijk, P. Dorenbos, and R. Visser, “Nd3+ and Pr3+ doped inorganic scintillators,” IEEE Trans. Nucl. Sci. 41, 738 (1994).

1993 (1)

J. K. Lawson and S. A. Payne, “Excited-state absorption of Eu2+-doped materials,” Phys. Rev. B Condens. Matter 47(21), 14003–14010 (1993).
[PubMed]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

1980 (1)

J. T. Kobayasi, S. Mroczkowski, J. Owen, and L. H. Brixner, “Fluorescence lifetime and quantum efficiency for 5d-4f transitions in Eu2+ doped chloride and fluoride crystals,” J. Lumin. 21, 247–257 (1980).

Al-Saleh, M.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).

An, C. Y.

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

Balda, R.

A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).

Barros de Oliveira, N.

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

Batista da Silva, A. V.

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

Bhattacharya, P.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Birowosuto, M. D.

J. Selling, M. D. Birowosuto, P. Dorenbos, and S. Schweizer, “Europium-doped barium halide scintillators for x-ray and gamma-ray detectors,” J. Appl. Phys. 101, 034901 (2007).

Boatner, L. A.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Bowman, S. R.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Upconversion and excited state absorption in the lower levels of Er:KPb2Cl5,” Opt. Mater. 30, 827–834 (2008).

Brixner, L. H.

J. T. Kobayasi, S. Mroczkowski, J. Owen, and L. H. Brixner, “Fluorescence lifetime and quantum efficiency for 5d-4f transitions in Eu2+ doped chloride and fluoride crystals,” J. Lumin. 21, 247–257 (1980).

Brown, E.

U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).

Burger, A.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Chang, N. W. H.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Cherepy, N. J.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Chicklis, E. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Condon, N. J.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Upconversion and excited state absorption in the lower levels of Er:KPb2Cl5,” Opt. Mater. 30, 827–834 (2008).

DeLoach, L.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).

Doh, S. H.

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

Dorenbos, P.

J. Selling, M. D. Birowosuto, P. Dorenbos, and S. Schweizer, “Europium-doped barium halide scintillators for x-ray and gamma-ray detectors,” J. Appl. Phys. 101, 034901 (2007).

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91, 155–176 (2000).

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

C. W. E. Van Eijk, P. Dorenbos, and R. Visser, “Nd3+ and Pr3+ doped inorganic scintillators,” IEEE Trans. Nucl. Sci. 41, 738 (1994).

Doualan, J. L.

A. Ferrier, M. Velazquez, J. L. Doualan, and R. J. Moncorge, “Midinfrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513 (2008).

A. Ferrier, M. Velazquez, J. L. Doualan, and R. Moncorge, “Energy level and excited state absorption properties of Er3+ doped KPb2Cl5,” J. Opt. Soc. Am. B 9, 2526 (2007).

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).

Felix, E. I.

O. V. Uche, E. I. Felix, and O. U. Rose, “A study of the optical properties of undoped and potash doped lead chloride crystal in silica gel,” Adv. Appl. Sci. Res. 3, 103–109 (2012).

Fernandez, J.

A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).

Ferreira da Silva, A.

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

Ferrier, A.

A. Ferrier, M. Velazquez, J. L. Doualan, and R. J. Moncorge, “Midinfrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513 (2008).

A. Ferrier, M. Velazquez, J. L. Doualan, and R. Moncorge, “Energy level and excited state absorption properties of Er3+ doped KPb2Cl5,” J. Opt. Soc. Am. B 9, 2526 (2007).

Francis, M. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Frei, G.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[PubMed]

Garcia-Adeva, A.

A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).

Grinberg, M.

K. Winskiewski, S. Mahlik, M. Grinberg, and H. J. Seo, “Influence of high hydrostatic pressure on Eu2+-luminescence in KMgF3:Eu2+ crystal,” J. Lumin. 131, 306–309 (2011).

Groza, M.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Gudel, H. U.

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

Güdel, H. U.

S. R. Lüthi, M. Pollnau, and H. U. Güdel, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Lu2I9 excited 1.54 µm,” Phys. Rev. B 60, 162–178 (1999).

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[PubMed]

Guillot-Noel, O.

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

Haas, J. M.

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

Hanley, C.

U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).

Hawrami, R.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Hehlen, M. P.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[PubMed]

Higgins, W. M.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

Hömmerich, U.

U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).

A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).

Hosken, D. J.

Huber, G. J.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

Isaenko, L.

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

Ivanova, S.

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

Ivanovskikh, K. V.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).

Kang, H.

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

Kim, H. J.

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

Kim, S.

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

Kim, W.

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

Kobayasi, J. T.

J. T. Kobayasi, S. Mroczkowski, J. Owen, and L. H. Brixner, “Fluorescence lifetime and quantum efficiency for 5d-4f transitions in Eu2+ doped chloride and fluoride crystals,” J. Lumin. 21, 247–257 (1980).

Kolopus, J. A.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Konves, J. R.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Kramer, K.

E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

Kramer, K. W.

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

Krupke, W.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).

Krupke, W. F.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Kurosawa, S.

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties of Eu-doped SrF2 single crystals,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9, 2275–2278 (2012).

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Lawson, J. K.

J. K. Lawson and S. A. Payne, “Excited-state absorption of Eu2+-doped materials,” Phys. Rev. B Condens. Matter 47(21), 14003–14010 (1993).
[PubMed]

Lindsey, A.

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

Loef, E. V. D.

E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).

Lüthi, S. R.

S. R. Lüthi, M. Pollnau, and H. U. Güdel, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Lu2I9 excited 1.54 µm,” Phys. Rev. B 60, 162–178 (1999).

Mahlik, S.

K. Winskiewski, S. Mahlik, M. Grinberg, and H. J. Seo, “Influence of high hydrostatic pressure on Eu2+-luminescence in KMgF3:Eu2+ crystal,” J. Lumin. 131, 306–309 (2011).

McAlexander, W.

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

Meijerink, A.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).

Melcher, C. L.

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

Mendioroz, A.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).

Moncorge, R.

A. Ferrier, M. Velazquez, J. L. Doualan, and R. Moncorge, “Energy level and excited state absorption properties of Er3+ doped KPb2Cl5,” J. Opt. Soc. Am. B 9, 2526 (2007).

Moncorge, R. J.

A. Ferrier, M. Velazquez, J. L. Doualan, and R. J. Moncorge, “Midinfrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513 (2008).

Moon, J.

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

Mroczkowski, S.

J. T. Kobayasi, S. Mroczkowski, J. Owen, and L. H. Brixner, “Fluorescence lifetime and quantum efficiency for 5d-4f transitions in Eu2+ doped chloride and fluoride crystals,” J. Lumin. 21, 247–257 (1980).

Munch, J.

Nostrand, M.

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

Nyein, E. E.

A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).

O’Connor, S. P.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Upconversion and excited state absorption in the lower levels of Er:KPb2Cl5,” Opt. Mater. 30, 827–834 (2008).

Ogieglo, J. M.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).

Ottaway, D. J.

Owen, J.

J. T. Kobayasi, S. Mroczkowski, J. Owen, and L. H. Brixner, “Fluorescence lifetime and quantum efficiency for 5d-4f transitions in Eu2+ doped chloride and fluoride crystals,” J. Lumin. 21, 247–257 (1980).

Page, R.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

Page, R. H.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

Park, H.

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

Payne, S.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

Payne, S. A.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

J. K. Lawson and S. A. Payne, “Excited-state absorption of Eu2+-doped materials,” Phys. Rev. B Condens. Matter 47(21), 14003–14010 (1993).
[PubMed]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Pepe, I.

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

Petermann, K.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

Pollnau, M.

S. R. Lüthi, M. Pollnau, and H. U. Güdel, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Lu2I9 excited 1.54 µm,” Phys. Rev. B 60, 162–178 (1999).

Quimby, R. S.

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Upconversion and excited state absorption in the lower levels of Er:KPb2Cl5,” Opt. Mater. 30, 827–834 (2008).

Rademaker, K.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

Ramey, J. O.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Ronda, C. R.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).

Rose, O. U.

O. V. Uche, E. I. Felix, and O. U. Rose, “A study of the optical properties of undoped and potash doped lead chloride crystal in silica gel,” Adv. Appl. Sci. Res. 3, 103–109 (2012).

Rowe, E.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Schweizer, S.

J. Selling, M. D. Birowosuto, P. Dorenbos, and S. Schweizer, “Europium-doped barium halide scintillators for x-ray and gamma-ray detectors,” J. Appl. Phys. 101, 034901 (2007).

Selling, J.

J. Selling, M. D. Birowosuto, P. Dorenbos, and S. Schweizer, “Europium-doped barium halide scintillators for x-ray and gamma-ray detectors,” J. Appl. Phys. 101, 034901 (2007).

Seo, H. J.

K. Winskiewski, S. Mahlik, M. Grinberg, and H. J. Seo, “Influence of high hydrostatic pressure on Eu2+-luminescence in KMgF3:Eu2+ crystal,” J. Lumin. 131, 306–309 (2011).

Setzler, S. D.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Shah, K. S.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

Simakov, N.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Stand, L.

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

Tkachuk, A.

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

Trivedi, S. B.

U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).

Tupitsyn, E.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

Uche, O. V.

O. V. Uche, E. I. Felix, and O. U. Rose, “A study of the optical properties of undoped and potash doped lead chloride crystal in silica gel,” Adv. Appl. Sci. Res. 3, 103–109 (2012).

van der Kolk, E.

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

van Eijk, C. W. E.

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

C. W. E. Van Eijk, P. Dorenbos, and R. Visser, “Nd3+ and Pr3+ doped inorganic scintillators,” IEEE Trans. Nucl. Sci. 41, 738 (1994).

van Loef, E.

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

van Loef, E. V. D.

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

Veissid, N.

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

Veitch, P. J.

Velazquez, M.

A. Ferrier, M. Velazquez, J. L. Doualan, and R. J. Moncorge, “Midinfrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513 (2008).

A. Ferrier, M. Velazquez, J. L. Doualan, and R. Moncorge, “Energy level and excited state absorption properties of Er3+ doped KPb2Cl5,” J. Opt. Soc. Am. B 9, 2526 (2007).

Vink, A. P.

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

Visser, R.

C. W. E. Van Eijk, P. Dorenbos, and R. Visser, “Nd3+ and Pr3+ doped inorganic scintillators,” IEEE Trans. Nucl. Sci. 41, 738 (1994).

Voda, M.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).

Weber, M. J.

M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100, 35–45 (2002).

Wilke, G.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).

Winskiewski, K.

K. Winskiewski, S. Mahlik, M. Grinberg, and H. J. Seo, “Influence of high hydrostatic pressure on Eu2+-luminescence in KMgF3:Eu2+ crystal,” J. Lumin. 131, 306–309 (2011).

Wu, Y.

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

Yanagida, T.

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties of Eu-doped SrF2 single crystals,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9, 2275–2278 (2012).

Yelisseyev, A.

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

Yokota, Y.

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties of Eu-doped SrF2 single crystals,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9, 2275–2278 (2012).

Yoshikawa, A.

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties of Eu-doped SrF2 single crystals,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9, 2275–2278 (2012).

Young, Y. E.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Zavada, J. M.

U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).

Zhuravleva, M.

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

Zych, A.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).

Adv. Appl. Sci. Res. (1)

O. V. Uche, E. I. Felix, and O. U. Rose, “A study of the optical properties of undoped and potash doped lead chloride crystal in silica gel,” Adv. Appl. Sci. Res. 3, 103–109 (2012).

Appl. Phys. B (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008).

Appl. Phys. Lett. (2)

E. V. D. Loef, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “High-energy-resolution scintillator: Ce3+ activated LaBr3,” Appl. Phys. Lett. 79, 1573–1575 (2001).

A. Ferreira da Silva, N. Veissid, C. Y. An, I. Pepe, N. Barros de Oliveira, and A. V. Batista da Silva, “Optical determination of the direct bandgap energy of lead iodide crystals,” Appl. Phys. Lett. 69, 1930–1932 (1996).

ECS J. Solid State Sci. Tech. (1)

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Tech. 2, R3148–R3152 (2013).

IEEE J. Quantum Electron. (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–896 (1996).

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

IEEE Trans. Nucl. Sci. (1)

C. W. E. Van Eijk, P. Dorenbos, and R. Visser, “Nd3+ and Pr3+ doped inorganic scintillators,” IEEE Trans. Nucl. Sci. 41, 738 (1994).

J. Alloys Compd. (1)

U. Hömmerich, C. Hanley, E. Brown, S. B. Trivedi, and J. M. Zavada, “Spectroscopic studies of the 1.5 µm emission from polycrystalline ceramic Er:YAG and Er:KPb2Cl5,” J. Alloys Compd. 488, 624–627 (2009).

J. Appl. Phys. (2)

A. Ferrier, M. Velazquez, J. L. Doualan, and R. J. Moncorge, “Midinfrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513 (2008).

J. Selling, M. D. Birowosuto, P. Dorenbos, and S. Schweizer, “Europium-doped barium halide scintillators for x-ray and gamma-ray detectors,” J. Appl. Phys. 101, 034901 (2007).

J. Cryst. Growth (2)

L. A. Boatner, J. O. Ramey, J. A. Kolopus, R. Hawrami, W. M. Higgins, E. van Loef, K. S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N. J. Cherepy, and S. A. Payne, “Bridgman growth of large SrI2:Eu2+ single crystals: A high performance scintillator for radiation detection applications,” J. Cryst. Growth 379, 63–68 (2013).

A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, and C. L. Melcher, “Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3:Eu scintillator,” J. Cryst. Growth 427, 42–47 (2015).

J. Korean Phys. Soc. (1)

J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, and S. H. Doh, “Scintillation properties of SrCl2(Eu) crystals,” J. Korean Phys. Soc. 49, 637–641 (2006).

J. Lumin. (6)

J. T. Kobayasi, S. Mroczkowski, J. Owen, and L. H. Brixner, “Fluorescence lifetime and quantum efficiency for 5d-4f transitions in Eu2+ doped chloride and fluoride crystals,” J. Lumin. 21, 247–257 (1980).

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91, 155–176 (2000).

P. Dorenbos, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, and K. S. Shah, “Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3,” J. Lumin. 117, 147–155 (2006).

O. Guillot-Noel, J. M. Haas, P. Dorenbos, C. W. E. van Eijk, K. Kramer, and H. U. Gudel, “Optical and scintillation properties of cerium-doped LaCl3, LaBr3, and LuI3,” J. Lumin. 85, 21–35 (1999).

M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100, 35–45 (2002).

K. Winskiewski, S. Mahlik, M. Grinberg, and H. J. Seo, “Influence of high hydrostatic pressure on Eu2+-luminescence in KMgF3:Eu2+ crystal,” J. Lumin. 131, 306–309 (2011).

J. Opt. Soc. Am. B (1)

A. Ferrier, M. Velazquez, J. L. Doualan, and R. Moncorge, “Energy level and excited state absorption properties of Er3+ doped KPb2Cl5,” J. Opt. Soc. Am. B 9, 2526 (2007).

Opt. Express (1)

Opt. Mater. (2)

R. S. Quimby, N. J. Condon, S. P. O’Connor, and S. R. Bowman, “Upconversion and excited state absorption in the lower levels of Er:KPb2Cl5,” Opt. Mater. 30, 827–834 (2008).

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+ doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).

Opt. Soc. Am. B (1)

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, and G. J. Huber, “Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with nonradiative decay,” Opt. Soc. Am. B 21, 2117–2129 (2004).

Phys. Rev. B (2)

A. Garcia-Adeva, R. Balda, J. Fernandez, E. E. Nyein, and U. Hömmerich, “Dynamics of the infrared-to-visible upconversion in an Er3+-doped KPb2Br5 crystal,” Phys. Rev. B 72, 165116 (2005).

S. R. Lüthi, M. Pollnau, and H. U. Güdel, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Lu2I9 excited 1.54 µm,” Phys. Rev. B 60, 162–178 (1999).

Phys. Rev. B Condens. Matter (2)

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[PubMed]

J. K. Lawson and S. A. Payne, “Excited-state absorption of Eu2+-doped materials,” Phys. Rev. B Condens. Matter 47(21), 14003–14010 (1993).
[PubMed]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties of Eu-doped SrF2 single crystals,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9, 2275–2278 (2012).

Other (8)

N. Ter-Gabrielyan, L. D. Merkle, M. Dubinskii, E.R. Kupp, and G. L. Messing, “Efficiently resonantly-pumped eye-safe composite ceramic Er:YAG laser,” Advanced Solid-State Photonics, Technical digest, paper AWB1 (2010).

A. G. Okhrichuk, L. N. Botvina, E. M. Dianova, N. V. Lichkova, V. Zavgorodnev, and A. V. Shestakov, “Upconversion processes accompanying the 2.5 um oscillation in the RbPb2Cl5: Pr3+ crystal,” Advanced Solid State Laser Conference (Optical Society of America), WB3 (2007).

A. A. Kaminskii, [Crystalline lasers: Physical processes and operating schemes], CRC press, New York (1996).

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon frequency crystals, based on rare earth doped double halogenides for multiwavelengths diode pumped solid-state lasers,” Proc. SPIE4900, 962–972 (2002).

R. Balda, A. J. Garcia-Adeva, M. Voda, and, J. Fernandez, “Upconversion processes in Er3+ doped KPb2Cl5,” Phys. Rev.B 69, 205203–1 - 205203–8 (2004).

M. Velazquez, A. Ferrier, J. L. Doualan, and R. Moncorge, “Rare-earth doped low phonon energy halide crystals for mid-infrared laser sources, solid state laser,” Prof. Amin Al-Khursan (Ed.) (2012).

E. Brown, A. G. Bluiett, U. Hommerich, and S. B. Trivedi, “Optical properties of Pr3+-, Ce3+- and Eu2+-doped ternary lead halides,” Proc. of SPIE 9359, 93591U 1–13 (2015).

R.-Y. Zhu, “Precision crystal calorimeters in high energy physics: past, present and future,” Proc. of SPIE Vol. 7079, 70790W 1–17 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Room temperature emission cross-section spectra and schematic energy level diagrams for Pr:KPb2Br5 and Er:KPb2Br5. The inset shows the 4I13/24I15/2 Er3+ emission band under 1532 nm pumping.
Fig. 2
Fig. 2 Visible emission from Pr: KPb2Br5 via (a) 1550 nm, (b) 474 nm, and (c) 590 nm pulsed laser excitation. (d) Visible emission decay transients from the 1D2 state under 1550 nm and 590 nm excitation and (e) Visible emission decay transients from the 3P0 state under 1550 nm and 590 nm excitation.
Fig. 3
Fig. 3 Room temperature emission from Er: KPb2Br5 stimulated by 1532 nm CW laser excitation.
Fig. 4
Fig. 4 (a) Room temperature excitation spectra of the upconverted emission from 4I9/24I15/2 of Er3+ overlaid with the 300K 4I15/24I13/2 ground state absorption band for Er: KPb2Br5. (b) Room temperature excitation spectra of the upconverted emission from 2H11/2 + 4S3/24I15/2 of Er3+ overlaid with the 300 K 4I15/24I13/2 ground state absorption band for Er: KPb2Br5. (c) Room temperature upconverted emission decay transients of the 4I9/24I15/2 and 2H11/2 + 4S3/24I15/2 from Er: KPb2Br5.
Fig. 5
Fig. 5 Schematic energy level diagram of (a) Pr3+ ETU processes (i) 3F3 + 3F33H5 + 1G4, (ii) 1G4 + 1G41D2 + 3H5, (iii) 1G4 + 1D23H5 + 3P1, (iv) 1D2 + 3F23P0 + 3H4. (b) Er3+ ETU processes (i) 4I13/2 + 4I13/24I15/2 + 4I9/2 (ii) 4I13/2 + 4I9/24I15/2 + 2H11/2,4S3/2.
Fig. 6
Fig. 6 The excitation (black dotted line) and emission spectra of Ce:YAP crystal at room temperature. The excitation and emission wavelengths are also indicated. The inset shows a schematic energy-level diagram of tentatively assigned optical excitation and emission transitions of Ce3+ in YAP and KPC.
Fig. 7
Fig. 7 The excitation (black dotted line) and emission (black solid line) spectra of Ce3+-doped KPb2Cl5 crystal at room temperature. The emission spectrum of undoped KPb2Cl5 is also shown (dashed line). The top of inset shows the excitation and emission spectra of previous study 1wt.% Ce: KPb2Cl5 crystal. The inset (bottom) shows the transmittance of Ce: KPb2Cl5 (right scale).
Fig. 8
Fig. 8 Radioluminescence spectra of undoped KPb2Cl5 and Ce3+ doped KPb2Cl5.
Fig. 9
Fig. 9 Transmittance spectra of (a) undoped KPb2Cl5 and Eu2+ doped KPb2Cl5 (b) undoped KPb2Br5 and Eu2+ doped KPb2Br5 crystals at room temperature in the region of 200-800 nm. (c) Absorption spectra of both crystals are also depicted. (d) A schematic diagram of tentative energy level of Eu2+ doped potassium lead halides is also shown.

Metrics