Abstract

The demand for faster magnetization switching speeds and lower energy consumption has driven the field of spintronics in recent years. The magnetic tunnel junction is the most developed spintronic memory device in which the magnetization of the information storage layer is switched by spin-transfer-torque or spin-orbit torque interactions. Whereas these novel spin-torque interactions exemplify the potential of electron-spin-based devices and memory, the switching speed is limited to the ns regime by the precessional motion of the magnetization. All-optical magnetization switching, based on the inverse Faraday effect, has been shown to be an attractive method for achieving magnetization switching at sub-ps speeds. Successful magnetization reversal in thin films has been demonstrated by using circularly polarized light. However, a method for all-optical switching of on-chip nanomagnets in high density memory modules has not been described. In this work we propose to use plasmonics, with CMOS compatible plasmonic materials, to achieve on-chip magnetization reversal in nanomagnets. Plasmonics allows light to be confined in dimensions much smaller than the diffraction limit of light. This in turn yields higher localized electromagnetic field intensities. In this work, through simulations, we show that by using localized surface plasmon resonances, it is possible to couple light to nanomagnets and achieve significantly higher opto-magnetic field values in comparison to free space light excitation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical switching of nematic liquid crystal films driven by localized surface plasmons

Makiko T. Quint, Silverio Delgado, John. H. Paredes, Zachary S. Nuno, Linda S. Hirst, and Sayantani Ghosh
Opt. Express 23(5) 6888-6895 (2015)

Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons

Hai Liu, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Feng Huang, Haiming Yuan, and Yongyuan Jiang
Opt. Express 20(17) 19160-19167 (2012)

Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field

Jian-Qiang Liu, Yu-Xiu Zhou, Li Li, Pan Wang, and Anatoly V. Zayats
Opt. Express 23(10) 12524-12532 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76(22), 4250–4253 (1996).
    [PubMed]
  2. A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 82, 2731–2784 (2010).
  3. M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell, “All-optical switching in granular ferromagnets caused by magnetic circular dichroism,” Sci. Rep. 6, 30522 (2016).
    [PubMed]
  4. K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).
  5. K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).
  6. L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
    [PubMed]
  7. P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, “Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena,” Phys. Rev. 143, 574–583 (1966).
  8. T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
    [PubMed]
  9. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
    [PubMed]
  10. V. I. Belotelov and A. K. Zvezdin, “Inverse transverse magneto-optical Kerr effect,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, (2012).
  11. V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).
  12. S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).
  13. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [PubMed]
  14. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
    [PubMed]
  15. Y. Y. Zou, J. P. Wang, C. H. Hee, T. C. Chong, Y. Y. Zou, and J. P. Wang, “Tilted media in a perpendicular recording system for high areal density recording,” Cit. Appl. Phys. Lett 82, (2003).
  16. X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).
  17. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
    [PubMed]
  18. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,”Appl. Phys. Lett.  96, 181102 (2010).
  19. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
  20. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [PubMed]
  21. J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
  22. R. Eppler, “Garnets for Short Wavelength Recording,” J. Phys. Chem. Solids 3697, 1479–1490 (1995).
  23. J. Y. Chen, L. He, J. P. Wang, and M. Li, “All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses,” Phys. Rev. Appl. 7, 021001 (2017).
  24. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kilidshev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
  25. U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).
  26. T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).
  27. W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).
  28. “COMSOL Multiphysics® Modeling Software,” https://www.comsol.com/ .
  29. S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).
  30. E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).
  31. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
    [PubMed]
  32. M. Kaneko, Y. Sabi, I. Ichimura, and S. Hashimoto, “Magneto-Optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,”, IEEE Trans. Magn. 29, 3766–3771 (1993).
  33. S. Klahn, P. Hansen, and F. J. A. M. Greidanus, “Recent advances in thin films for magneto-optic recording,” Vacuum 41, 1160–1165 (1990).

2017 (2)

J. Y. Chen, L. He, J. P. Wang, and M. Li, “All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses,” Phys. Rev. Appl. 7, 021001 (2017).

S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).

2016 (1)

M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell, “All-optical switching in granular ferromagnets caused by magnetic circular dichroism,” Sci. Rep. 6, 30522 (2016).
[PubMed]

2015 (2)

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

2013 (3)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

2012 (3)

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kilidshev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).

2011 (3)

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[PubMed]

2010 (6)

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,”Appl. Phys. Lett.  96, 181102 (2010).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 82, 2731–2784 (2010).

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

2008 (1)

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

2003 (1)

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

1996 (1)

E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76(22), 4250–4253 (1996).
[PubMed]

1995 (1)

R. Eppler, “Garnets for Short Wavelength Recording,” J. Phys. Chem. Solids 3697, 1479–1490 (1995).

1993 (1)

M. Kaneko, Y. Sabi, I. Ichimura, and S. Hashimoto, “Magneto-Optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,”, IEEE Trans. Magn. 29, 3766–3771 (1993).

1992 (1)

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

1990 (1)

S. Klahn, P. Hansen, and F. J. A. M. Greidanus, “Recent advances in thin films for magneto-optic recording,” Vacuum 41, 1160–1165 (1990).

1966 (1)

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, “Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena,” Phys. Rev. 143, 574–583 (1966).

Atkinson, R.

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

Awazu, K.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Beaurepaire, E.

E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76(22), 4250–4253 (1996).
[PubMed]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).

Berini, B.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Bezus, E. A.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).

Bigot, J.

E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76(22), 4250–4253 (1996).
[PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kilidshev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

Buzzi, M.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

Chantrell, R.

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Chantrell, R. W.

M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell, “All-optical switching in granular ferromagnets caused by magnetic circular dichroism,” Sci. Rep. 6, 30522 (2016).
[PubMed]

Chen, J. Y.

J. Y. Chen, L. He, J. P. Wang, and M. Li, “All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses,” Phys. Rev. Appl. 7, 021001 (2017).

Chen, X.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

Chen, Z.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

Chowdhury, R.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

Clegg, W. W.

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[PubMed]

Daunois, A.

E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76(22), 4250–4253 (1996).
[PubMed]

Deb, M.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Doskolovich, L. L.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).

Dregely, D.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

Dürr, H. A.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

El Moussaoui, S.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

Ellis, M. O. A.

M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell, “All-optical switching in granular ferromagnets caused by magnetic circular dichroism,” Sci. Rep. 6, 30522 (2016).
[PubMed]

El-Sayed, M. A.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

Endo, M.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Eppler, R.

R. Eppler, “Garnets for Short Wavelength Recording,” J. Phys. Chem. Solids 3697, 1479–1490 (1995).

Franco Galeano, A. F.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Fujimaki, M.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Fujita, K.

S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).

Fullerton, E. E.

M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell, “All-optical switching in granular ferromagnets caused by magnetic circular dichroism,” Sci. Rep. 6, 30522 (2016).
[PubMed]

Gan, H. D.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Gendron, F.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Gerlach, S.

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

Granitzka, P.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Graves, C. E.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Greidanus, F. J. A. M.

S. Klahn, P. Hansen, and F. J. A. M. Greidanus, “Recent advances in thin films for magneto-optic recording,” Vacuum 41, 1160–1165 (1990).

Guler, U.

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).

Hansen, P.

S. Klahn, P. Hansen, and F. J. A. M. Greidanus, “Recent advances in thin films for magneto-optic recording,” Vacuum 41, 1160–1165 (1990).

Hantschmann, M.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Hashimoto, S.

M. Kaneko, Y. Sabi, I. Ichimura, and S. Hashimoto, “Magneto-Optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,”, IEEE Trans. Magn. 29, 3766–3771 (1993).

Hayakawa, J.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

He, L.

J. Y. Chen, L. He, J. P. Wang, and M. Li, “All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses,” Phys. Rev. Appl. 7, 021001 (2017).

Hecht, B.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Heinrich, A.

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).

Hendren, W. R.

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

Higley, D. J.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Hinzke, D.

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Huang, X.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

Ichimura, I.

M. Kaneko, Y. Sabi, I. Ichimura, and S. Hashimoto, “Magneto-Optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,”, IEEE Trans. Magn. 29, 3766–3771 (1993).

Ikeda, S.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

Itoh, A.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Jenkins, D. F. L.

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

Kachkachi, H.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Kalashnikova, A. M.

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Kalish, A. N.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).

Kamakura, R.

S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).

Kanai, S.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Kaneko, M.

M. Kaneko, Y. Sabi, I. Ichimura, and S. Hashimoto, “Magneto-Optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,”, IEEE Trans. Magn. 29, 3766–3771 (1993).

Keller, N.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Khurgin, J. B.

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,”Appl. Phys. Lett.  96, 181102 (2010).

Kildishev, A. V.

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).

Kilidshev, A. V.

Kimel, A. V

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Kimel, A. V.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 82, 2731–2784 (2010).

Kirilyuk, A.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 82, 2731–2784 (2010).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Klahn, S.

S. Klahn, P. Hansen, and F. J. A. M. Greidanus, “Recent advances in thin films for magneto-optic recording,” Vacuum 41, 1160–1165 (1990).

Koene, B.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Körner, T.

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).

Le Guyader, L.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

Leitenmeier, S.

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).

Li, M.

J. Y. Chen, L. He, J. P. Wang, and M. Li, “All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses,” Phys. Rev. Appl. 7, 021001 (2017).

Liu, T. M.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Malmstrom, L. D.

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, “Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena,” Phys. Rev. 143, 574–583 (1966).

Matsukura, F.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Merle, J.

E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76(22), 4250–4253 (1996).
[PubMed]

Miura, K.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Mizunuma, K.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Murai, S.

S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).

Murakami, H.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kilidshev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

Narayan, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

Ni, X.

Nolting, F.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

Nowak, U.

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Ohki, Y.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Ohno, H.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Ott, F.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Pershan, P. S.

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, “Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena,” Phys. Rev. 143, 574–583 (1966).

Pollard, R. J.

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

Popova, E.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Rasing, T.

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 82, 2731–2784 (2010).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Razinskas, G.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Reid, A. H.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Rockstuhl, C.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Sabi, Y.

M. Kaneko, Y. Sabi, I. Ichimura, and S. Hashimoto, “Magneto-Optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,”, IEEE Trans. Magn. 29, 3766–3771 (1993).

Salter, I. W.

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

Sands, T. D.

Savoini, M.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

Scherz, A.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[PubMed]

Schroeder, J. L.

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

Singh, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[PubMed]

Stockman, M. I.

Stöhr, J.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).

Sun, G.

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,”Appl. Phys. Lett.  96, 181102 (2010).

Tanaka, K.

S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).

Tiwari, P.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

Tominaga, J.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Tsukamoto, A.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

Vahaplar, K.

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

van der Ziel, J. P.

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, “Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena,” Phys. Rev. 143, 574–583 (1966).

Wang, J. P.

J. Y. Chen, L. He, J. P. Wang, and M. Li, “All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses,” Phys. Rev. Appl. 7, 021001 (2017).

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[PubMed]

Wang, T.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Warot-Fonrose, B.

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

Watanabe, T.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

Wright, C. D.

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

Wu, X.

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Yamamoto, H.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Yao, S.

S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).

Yoshida, N.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

Zheleva, T.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

Zvezdin, A. K.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

Appl. Phys. B Lasers Opt. (1)

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B Lasers Opt. 107, 285–291 (2012).

Appl. Phys. Lett (1)

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,”Appl. Phys. Lett.  96, 181102 (2010).

Appl. Phys. Lett. (1)

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).

IEEE Trans. Magn. (1)

M. Kaneko, Y. Sabi, I. Ichimura, and S. Hashimoto, “Magneto-Optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,”, IEEE Trans. Magn. 29, 3766–3771 (1993).

J. Adv. Res. (1)

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

J. Am. Chem. Soc. (1)

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[PubMed]

J. Magn. Magn. Mater. (2)

S. Yao, R. Kamakura, S. Murai, K. Fujita, and K. Tanaka, “Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method,” J. Magn. Magn. Mater. 422, 100–104 (2017).

E. Popova, A. F. Franco Galeano, M. Deb, B. Warot-Fonrose, H. Kachkachi, F. Gendron, F. Ott, B. Berini, and N. Keller, “Magnetic anisotropies in ultrathin bismuth iron garnet films,” J. Magn. Magn. Mater. 335, 139–143 (2013).

J. Phys. Chem. Solids (1)

R. Eppler, “Garnets for Short Wavelength Recording,” J. Phys. Chem. Solids 3697, 1479–1490 (1995).

J. Phys. Condens. Matter (1)

W. R. Hendren, R. Atkinson, R. J. Pollard, I. W. Salter, C. D. Wright, W. W. Clegg, and D. F. L. Jenkins, “Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording,” J. Phys. Condens. Matter 15, 1461–1468 (2003).

J. Phys. Conf. Ser. (1)

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200, 92003 (2010).

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

Nano Lett. (1)

T. M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A. V. Kimel, A. Kirilyuk, T. Rasing, and H. A. Dürr, “Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo-Competition with Nanoscale Heterogeneity,” Nano Lett. 15(10), 6862–6868 (2015).
[PubMed]

Nat. Commun. (3)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[PubMed]

L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A. V. Kimel, and F. Nolting, “Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures,” Nat. Commun. 6, 5839 (2015).
[PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[PubMed]

Nat. Mater. (1)

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9(9), 721–724 (2010).
[PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, “Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena,” Phys. Rev. 143, 574–583 (1966).

Phys. Rev. Appl. (1)

J. Y. Chen, L. He, J. P. Wang, and M. Li, “All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses,” Phys. Rev. Appl. 7, 021001 (2017).

Phys. Rev. B (1)

K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, S. Gerlach, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012).

Phys. Rev. Lett. (1)

E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76(22), 4250–4253 (1996).
[PubMed]

Phys. Status Solidi Appl. Mater. Sci. (1)

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, “Magneto-optical garnets for integrated optoelectronic devices,” Phys. Status Solidi Appl. Mater. Sci. 208, 252–263 (2011).

Rev. Mod. Phys. (1)

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 82, 2731–2784 (2010).

Sci. Rep. (1)

M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell, “All-optical switching in granular ferromagnets caused by magnetic circular dichroism,” Sci. Rep. 6, 30522 (2016).
[PubMed]

Vacuum (1)

S. Klahn, P. Hansen, and F. J. A. M. Greidanus, “Recent advances in thin films for magneto-optic recording,” Vacuum 41, 1160–1165 (1990).

Other (5)

“COMSOL Multiphysics® Modeling Software,” https://www.comsol.com/ .

K. Vahaplar, A. M. Kalashnikova, A. V Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” (n.d.).

V. I. Belotelov and A. K. Zvezdin, “Inverse transverse magneto-optical Kerr effect,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, (2012).

Y. Y. Zou, J. P. Wang, C. H. Hee, T. C. Chong, Y. Y. Zou, and J. P. Wang, “Tilted media in a perpendicular recording system for high areal density recording,” Cit. Appl. Phys. Lett 82, (2003).

S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of proposed design. The substrate used is MgO. Each nanodisk consists of a plasmonic antenna (yellow), with a thin magnetic layer (purple) with a capping layer (green) on top. (b) Schematic of only a nanomagnet with the capping layer. In both figures, the red circular arrow at the bottom indicates that the illumination is with circularly polarized light and the curly red arrow indicates the direction of incidence.

Fig. 2
Fig. 2

(a) Permittivity of Bismuth Iron Garnet (BIG) obtained from ref [26]. (b) Permittivity of GdFeCo obtained from ref [27]. (c) Permittivity of plasmonic TiN on MgO experimentally measured in our laboratory from spectroscopic ellipsometry measurements.

Fig. 3
Fig. 3

(a) Comparison of the z-component of the opto-magnetic field intensity along the x-axis of BIG-TiN interface for a 10nm thick BIG layer in the MPS (nanomagnet with TiN resonator) and NPS (only nanomagnet) sample. Illumination is with circularly polarized light of intensity 1mJ/cm2 at 710nm wavelength under normal incidence. (b) Wavelength dependence of the z-component of the opto-magnetic field for the MPS sample (50 nm diameter) at the stack center at the TiN-BIG interface. Inset: Plot of HOM,z over the entire volume of the magnet. (c) Plot of HOM,z along the axis of BIG nanomagnet. (z = 0nm refers to the TiN-BIG interface).

Fig. 4
Fig. 4

(a) Electric field components along the x-axis of BIG-TiN interface for a 10nm BIG layer in the MPS sample. (b) Electric field intensity plot along the xy and yz plane for the 10nm BIG-TiN MPS structure under illumination with circularly polarized light of intensity 1mJ/cm2 at 710nm wavelength. Top inset: Schematic of the vertical cross-section of BIG-TiN MPS sample (c) Electric field components along the x-axis of BIG-MgO interface for a 10nm BIG layer in the NPS sample. (d) Electric field intensity plot along the xy and yz plane for the 10nm BIG NPS structure under illumination with circularly polarized light of intensity 1mJ/cm2 at 710nm wavelength. Bottom inset: Schematic of vertical cross-section of BIG-MgO NPS structure.

Fig. 5
Fig. 5

(a) Comparison of the z-component of the opto-magnetic field intensity along the x-axis of GdFeCo-Si3N4 interface for a 10nm GdFeCo layer MPS (nanomagnet with TiN resonator) and NPS (only nanomagnet) sample. (b) Electric field intensity plots along the xy(GdFeCo-Si3N4) and yz plane for the MPS(nanomagnet with TiN resonator) sample. (c) Electric field intensity plots along the xy(GdFeCo-Si3N4) and yz plane for the NPS(only nanomagnet) sample. Illumination is with circularly polarized light of intensity 1mJ/cm2 at 710nm wavelength under normal incidence.

Fig. 6
Fig. 6

(a) Comparison of opto-magnetic field intensity along the x-axis of BIG-TiN interface for MPS (magnet-plasmon coupled) structure and BIG-MgO interface for NPS(only nanomagnet) structure with 20nm diameter. Inset: Schematic of structures. (b) Electric field intensity plot at TiN–BIG interface for MPS sample. (c) Electric field components along the x-axis of the TiN-BIG interface for MPS sample. (d) Electric Field intensity plot along the y-z plane of the MPS sample. Illumination is with circularly polarized light of intensity 1mJ/cm2 at the resonant wavelength of 710nm.

Fig. 7
Fig. 7

(a) Wavelength dependence of the z-component of the opto-magnetic field for a 50nm diameter MPS sample at the stack center at the TiN-BIG interface. Inset: Schematic of the structure. Blue arrows correspond to the wavelengths for which the electric field amplitude of light is plotted in b. (b) Electric field intensity plot along the xy and yz plane for the 10nm BIG-TiN MPS structure under illumination with circularly polarized light of intensity 1mJ/cm2. The wavelength of excitation is shown at the bottom left corner (xy plane refers to the BIG-TiN interface).

Fig. 8
Fig. 8

(a) Comparison of the z-component of the opto-magnetic field intensity for a 10nm BIG layer along the x-axis of BIG-TiN interface and lower BIG-Si3N4 interface respectively in the MPS(nanomagnet with TiN resonator) and all dielectric (TiN replaced by Si3N4) sample. Illumination is with circularly polarized light of fluence 1mJ/cm2 at 710nm under normal incidence. Inset: Schematic of the two structures. (b) Electric field intensity color maps for the two structures under illumination with 710 nm circularly polarized light of 1mJ/cm2 fluence (xy plane refers to the BIG-TiN and lower BIG-Si3N4 interface in the top and bottom plots respectively).

Tables (1)

Tables Icon

Table 1 Summary of Results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H OM =σβ ε 0 | ( E× E * ) | n ^
β= θ F λn πd M 0
FOM= H OM,z(MPS) H OM,z(NPS)