Abstract

We experimentally demonstrate the fabrication of silver/polydimethylsiloxane (PDMS) composite microline structures based on the simultaneous induction of the photoreduction of silver ions and the photopolymerization of PDMS using a femtosecond laser. We show that the fabricated line structures exhibit electrical conductivity and that the resistance of the structures increases when they are subjected to mechanical force. Demonstration of sensitivity to an external mechanical force obtained by exploiting flexible composite structures fabricated by a femtosecond laser is reported for the first time. The present technique using a femtosecond laser is promising for the fabrication of flexible optical/electrical devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethylene glycol) diacrylate (PEGDA) hydrogel

Mitsuhiro Terakawa, Maria Leilani Torres-Mapa, Akihiro Takami, Dag Heinemann, Nikolay N. Nedyalkov, Yasutaka Nakajima, Anton Hördt, Tammo Ripken, and Alexander Heisterkamp
Opt. Lett. 41(7) 1392-1395 (2016)

Fabrication of microelectrodes based on precursor doped with metal seeds by femtosecond laser direct writing

Bin-Bin Xu, Dan-Dan Zhang, Xue-Qing Liu, Lei Wang, Wei-Wei Xu, Masanobu Haraguchi, and Ai-Wu Li
Opt. Lett. 39(3) 434-437 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).
  2. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44(16), 3238–3245 (2005).
    [PubMed]
  3. S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
    [PubMed]
  4. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
    [PubMed]
  5. H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
    [PubMed]
  6. V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
    [PubMed]
  7. L. Guo and S. P. DeWeerth, “An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate,” Small 6(24), 2847–2852 (2010).
    [PubMed]
  8. H. Gou, J. Xu, X. Xia, and H. Chen, “Air plasma assisting microcontact deprinting patterns,” ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010).
    [PubMed]
  9. W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).
  10. Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip 8(2), 352–357 (2008).
    [PubMed]
  11. A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
    [PubMed]
  12. J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
    [PubMed]
  13. S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).
  14. J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
  15. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).
  16. A. Ishikawa and T. Tanaka, “Two-photon fabrication of three-dimensional metallic nanostructures for plasmonic metamaterials,” J. Laser Micro Nanoeng. 7(1), 11–15 (2012).
  17. W. Lu, Y. Zhang, M. Zheng, Y. Jia, J. Liu, X. Dong, Z. Zhao, C. Li, Y. Xia, T. Ye, and X. Duan, “Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction,” Opt. Mater. Express 3(10), 1660–1673 (2013).
  18. G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
    [PubMed]
  19. M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).
  20. M. Terakawa, M. L. Torres-Mapa, A. Takami, D. Heinemann, N. N. Nedyalkov, Y. Nakajima, A. Hördt, T. Ripken, and A. Heisterkamp, “Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethylene glycol) diacrylate (PEGDA) hydrogel,” Opt. Lett. 41(7), 1392–1395 (2016).
    [PubMed]
  21. A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).
  22. Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).
  23. D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
  24. T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” in 2006 IEEE International Symposium on MicroNanoMechanical and Human Science (IEEE, 2006), pp. 158–161.
  25. S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21(14), 17028–17041 (2013).
    [PubMed]
  26. C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly (dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
  27. D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).
  28. W. S. Kuo, C. H. Lien, K. C. Cho, C. Y. Chang, C. Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
    [PubMed]
  29. C. H. Lien, W. S. Kuo, K. C. Cho, C. Y. Lin, Y. D. Su, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry,” Opt. Express 19(7), 6260–6268 (2011).
    [PubMed]
  30. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011).
    [PubMed]
  31. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
    [PubMed]
  32. E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
    [PubMed]
  33. Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
    [PubMed]
  34. R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation,” Phys. Chem. Chem. Phys. 18(25), 17024–17028 (2016).
    [PubMed]
  35. Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).
  36. C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
    [PubMed]
  37. W. M. Haynes, CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, 2014).
  38. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
    [PubMed]

2017 (2)

W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

2016 (5)

Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation,” Phys. Chem. Chem. Phys. 18(25), 17024–17028 (2016).
[PubMed]

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

M. Terakawa, M. L. Torres-Mapa, A. Takami, D. Heinemann, N. N. Nedyalkov, Y. Nakajima, A. Hördt, T. Ripken, and A. Heisterkamp, “Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethylene glycol) diacrylate (PEGDA) hydrogel,” Opt. Lett. 41(7), 1392–1395 (2016).
[PubMed]

2015 (6)

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).

J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
[PubMed]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

2014 (3)

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[PubMed]

2013 (3)

2012 (1)

A. Ishikawa and T. Tanaka, “Two-photon fabrication of three-dimensional metallic nanostructures for plasmonic metamaterials,” J. Laser Micro Nanoeng. 7(1), 11–15 (2012).

2011 (4)

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

C. H. Lien, W. S. Kuo, K. C. Cho, C. Y. Lin, Y. D. Su, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry,” Opt. Express 19(7), 6260–6268 (2011).
[PubMed]

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011).
[PubMed]

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

2010 (4)

L. Guo and S. P. DeWeerth, “An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate,” Small 6(24), 2847–2852 (2010).
[PubMed]

H. Gou, J. Xu, X. Xia, and H. Chen, “Air plasma assisting microcontact deprinting patterns,” ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010).
[PubMed]

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

W. S. Kuo, C. H. Lien, K. C. Cho, C. Y. Chang, C. Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
[PubMed]

2009 (2)

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

2008 (1)

Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip 8(2), 352–357 (2008).
[PubMed]

2007 (1)

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).

2006 (1)

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).

2005 (1)

2004 (2)

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly (dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Adagunodo, M. O.

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

Aida, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

Ajayan, P. M.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Alvarez, P. J. J.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Amjadi, M.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[PubMed]

Asaba, K.

Aydogdu, B.

Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).

Baek, D. J.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Barcikowski, S.

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

Barner-Kowollik, C.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Bilican, I.

Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).

Blasco, E.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Bu, S.

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

Campagnola, P. J.

Chang, C. Y.

Chen, H.

H. Gou, J. Xu, X. Xia, and H. Chen, “Air plasma assisting microcontact deprinting patterns,” ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010).
[PubMed]

Chen, H. Y.

Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip 8(2), 352–357 (2008).
[PubMed]

Chen, Q.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Chen, Q. D.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Chen, S. J.

Chichkov, B. N.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).

Cho, K. C.

Choi, S. J.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Choi, Y. K.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Chong, T. C.

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Coenjarts, C. A.

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly (dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).

Demming, S.

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

DeWeerth, S. P.

L. Guo and S. P. DeWeerth, “An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate,” Small 6(24), 2847–2852 (2010).
[PubMed]

Dong, C. Y.

Dong, W.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Dong, X.

Dong, X. Z.

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

Duan, X.

Duan, X. M.

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011).
[PubMed]

Duarte, J. P.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Edlich, A.

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

Elbuken, C.

Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).

Forro, C.

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

Franco-lara, E.

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

Fukushima, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

Furlani, E. P.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

Gao, N.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Goldschmidtboeing, F.

J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
[PubMed]

Gou, H.

H. Gou, J. Xu, X. Xia, and H. Chen, “Air plasma assisting microcontact deprinting patterns,” ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010).
[PubMed]

Goyal, A.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Guan, Z.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Guler, M. T.

Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).

Guo, L.

L. Guo and S. P. DeWeerth, “An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate,” Small 6(24), 2847–2852 (2010).
[PubMed]

Ha, J. S.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

Hague, R.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Hahn, A.

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

Han, D.

D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).

Hata, K.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

He, G. C.

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

He, Y.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Heinemann, D.

Heisterkamp, A.

Hohmann, J. K.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).

Hong, M. H.

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Hong, S. Y.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

Hördt, A.

Hu, Q.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Huang, J. C.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Huang, L. L. H.

Huang, S. M.

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Im, H.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Irvine, D.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Ishikawa, A.

A. Ishikawa and T. Tanaka, “Two-photon fabrication of three-dimensional metallic nanostructures for plasmonic metamaterials,” J. Laser Micro Nanoeng. 7(1), 11–15 (2012).

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).

Isiksacan, Z.

Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).

Jeong, Y. R.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

Jia, Y.

Jiang, C.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Jiang, T.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Jin, F.

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011).
[PubMed]

Jin, S.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

John, G.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Juodkazis, S.

Kawata, S.

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011).
[PubMed]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).

Kim, D.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Kim, K. T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

Kinashi, K.

R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation,” Phys. Chem. Chem. Phys. 18(25), 17024–17028 (2016).
[PubMed]

Krull, R.

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

Kumar, A.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Kuo, W. S.

Kwon, T. H.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Larmagnac, A.

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

Lee, S.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[PubMed]

Lee, S. J.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

Li, C.

Li, Q.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Lien, C. H.

Lim, C. T.

W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).

Lin, C. Y.

Liu, D.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Liu, J.

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

W. Lu, Y. Zhang, M. Zheng, Y. Jia, J. Liu, X. Dong, Z. Zhao, C. Li, Y. Xia, T. Ye, and X. Duan, “Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction,” Opt. Mater. Express 3(10), 1660–1673 (2013).

Liu, Y.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip 8(2), 352–357 (2008).
[PubMed]

Lu, D.

D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).

Lu, W.

Luk’yanchuk, B.

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Maeda, H.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

Mahendra, S.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Malinauskas, M.

Martinez, V.

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

Masui, K.

Midorikawa, K.

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

Moon, D. I.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Müller, J.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Müller, P.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Nakajima, H.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

Nakajima, Y.

Nakamura, R.

R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation,” Phys. Chem. Chem. Phys. 18(25), 17024–17028 (2016).
[PubMed]

Nedyalkov, N. N.

Niu, L.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Niu, L. G.

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

Ober, C. K.

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly (dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).

Ong, T. S.

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Ostendorf, A.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).

Ovsianikov, A.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).

Pan, Y.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Park, H.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

Park, I.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[PubMed]

Patra, P. K.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Pichitpajongkit, A.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[PubMed]

Prasad, P. N.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

Rance, G.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Rekštyte, S.

Renner, M.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).

Ripken, T.

Rodgers, T. C.

Ruhhammer, J.

J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
[PubMed]

Ryu, S.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[PubMed]

Sakai, W.

R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation,” Phys. Chem. Chem. Phys. 18(25), 17024–17028 (2016).
[PubMed]

Scherer, T.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Schön, M.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Seifert, A.

J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
[PubMed]

Sekitani, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

Seol, M. L.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

Shao, Z. Z.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Shoji, S.

Shukla, S.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

Simonelli, M.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Smith, E.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Someya, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

Stauffer, F.

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

Su, Y. D.

Sugioka, K.

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

Sun, H.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Sun, H. B.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Sun, S. M.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Sun, Y.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Sun, Y. L.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Swihart, M. T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

Tabatabaei, S.

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Takami, A.

Tanaka, T.

A. Ishikawa and T. Tanaka, “Two-photon fabrication of three-dimensional metallic nanostructures for plasmonic metamaterials,” J. Laser Micro Nanoeng. 7(1), 11–15 (2012).

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).

Terakawa, M.

Torres-Mapa, M. L.

Trouillet, V.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Tsutsumi, N.

R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation,” Phys. Chem. Chem. Phys. 18(25), 17024–17028 (2016).
[PubMed]

Tuck, C.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Urbas, A.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

Van, L. H.

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Vidal, X.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

von Freymann, G.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).

Vörös, J.

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

Waller, E. H.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).

Wang, H.

D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).

Wang, Y.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Wegener, M.

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Werber, A.

Wildman, R.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Woias, P.

J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
[PubMed]

Wu, D.

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

Wu, S. Z.

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

Xi, W.

W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).

Xia, H.

D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).

Xia, X.

H. Gou, J. Xu, X. Xia, and H. Chen, “Air plasma assisting microcontact deprinting patterns,” ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010).
[PubMed]

Xia, Y.

Xu, J.

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

H. Gou, J. Xu, X. Xia, and H. Chen, “Air plasma assisting microcontact deprinting patterns,” ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010).
[PubMed]

Xu, J. J.

Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip 8(2), 352–357 (2008).
[PubMed]

Xu, Q. H.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Ye, T.

Yeo, J. C.

W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).

Yoon, Y. K.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

Yu, L.

W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).

Yuan, P.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Yun, J.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

Zappe, H.

Zens, M.

J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
[PubMed]

Zhang, F.

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Zhang, L.

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Zhang, Q.

Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip 8(2), 352–357 (2008).
[PubMed]

Zhang, S.

W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).

Zhang, Y.

D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).

W. Lu, Y. Zhang, M. Zheng, Y. Jia, J. Liu, X. Dong, Z. Zhao, C. Li, Y. Xia, T. Ye, and X. Duan, “Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction,” Opt. Mater. Express 3(10), 1660–1673 (2013).

Zhao, T.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Zhao, Z.

Zhao, Z. S.

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

Zheng, B. Y.

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Zheng, M.

Zheng, M. L.

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

Zhou, N.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

Zi, G.

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

ACS Appl. Mater. Interfaces (4)

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek, M. L. Seol, J. P. Duarte, and Y. K. Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water,” ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011).
[PubMed]

V. Martinez, F. Stauffer, M. O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, “Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties,” ACS Appl. Mater. Interfaces 7(24), 13467–13475 (2015).
[PubMed]

H. Gou, J. Xu, X. Xia, and H. Chen, “Air plasma assisting microcontact deprinting patterns,” ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010).
[PubMed]

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[PubMed]

ACS Nano (3)

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[PubMed]

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[PubMed]

H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, “Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,” ACS Nano 9(10), 9974–9985 (2015).
[PubMed]

Adv. Mater. (1)

E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, and M. Wegener, “Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing,” Adv. Mater. 28(18), 3592–3595 (2016).
[PubMed]

Adv. Mater. Technol. (1)

W. Xi, J. C. Yeo, L. Yu, S. Zhang, and C. T. Lim, “Ultrathin and Wearable Microtubular Epidermal Sensor for Real-Time Physiological Pulse Monitoring,” Adv. Mater. Technol. 2(5), 1700016 (2017).

Adv. Opt. Mater. (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional μ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).

Appl. Phys., A Mater. Sci. Process. (1)

M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 791–794 (2004).

Appl. Surf. Sci. (1)

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).

Chem. Mater. (1)

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly (dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).

J. Laser Micro Nanoeng. (1)

A. Ishikawa and T. Tanaka, “Two-photon fabrication of three-dimensional metallic nanostructures for plasmonic metamaterials,” J. Laser Micro Nanoeng. 7(1), 11–15 (2012).

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

D. Lu, Y. Zhang, D. Han, H. Wang, and H. Xia, “Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 1751–1756 (2015).

J. Micromech. Microeng. (1)

Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican, and C. Elbuken, “Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation,” J. Micromech. Microeng. 26(3), 35008 (2016).

Lab Chip (1)

Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip 8(2), 352–357 (2008).
[PubMed]

Laser Photonics Rev. (1)

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).

Light Sci. Appl. (1)

Y. Sun, W. Dong, L. Niu, T. Jiang, D. Liu, L. Zhang, Y. Wang, Q. Chen, D. Kim, and H. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light Sci. Appl. 3, e129 (2014).

Macromol. Rapid Commun. (1)

A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, and P. M. Ajayan, “In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films,” Macromol. Rapid Commun. 30(13), 1116–1122 (2009).
[PubMed]

Nat. Commun. (1)

Y. L. Sun, Q. Li, S. M. Sun, J. C. Huang, B. Y. Zheng, Q. D. Chen, Z. Z. Shao, and H. B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6, 8612 (2015).
[PubMed]

Nat. Mater. (1)

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation,” Phys. Chem. Chem. Phys. 18(25), 17024–17028 (2016).
[PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

S. Demming, A. Hahn, A. Edlich, E. Franco-lara, R. Krull, S. Barcikowski, and S. Bu, “Softlithographic, partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices,” Phys. Status Solidi., A Appl. Mater. Sci. 207(4), 898–903 (2010).

Polymers (Basel) (1)

Y. Liu, Q. Hu, F. Zhang, C. Tuck, D. Irvine, R. Hague, Y. He, M. Simonelli, G. Rance, E. Smith, and R. Wildman, “Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication,” Polymers (Basel) 8(9), 325 (2016).

Sci. Rep. (1)

G. C. He, M. L. Zheng, X. Z. Dong, F. Jin, J. Liu, X. M. Duan, and Z. S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7, 41757 (2017).
[PubMed]

Sci. Technol. Adv. Mater. (1)

J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, and P. Woias, “Highly elastic conductive polymeric MEMS,” Sci. Technol. Adv. Mater. 16(1), 015003 (2015).
[PubMed]

Small (1)

L. Guo and S. P. DeWeerth, “An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate,” Small 6(24), 2847–2852 (2010).
[PubMed]

Other (2)

T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” in 2006 IEEE International Symposium on MicroNanoMechanical and Human Science (IEEE, 2006), pp. 158–161.

W. M. Haynes, CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical setup for fabrication of composite line structures by laser irradiation with in situ monitoring.

Fig. 2
Fig. 2

Experimental procedure for electrical conductivity measurement of a fabricated composite line structure. (a) Ion sputtering of an 8-nm-thick gold thin film on a cover glass. (b) Preparation of gold electrodes. Laser ablation was carried out to obtain approximately 90-μm-wide gap of the gold film. (c) Fabrication of a line structure across the two gold electrodes. (d) Electrical conductivity measurement of the line structure. (e) Temporal profile of the resistance of the line structure when 5-second-air-blowing applied.

Fig. 3
Fig. 3

(a) Optical microscope image of a structure fabricated by femtosecond laser irradiation of a mixture of PDMS and silver benzoate in hexane. Laser power was 60 mW. Scanning speed was 2 mm/s. Number of laser scans was 5. Scale bar indicates 25 μm. (b) SEM image of the fabricated structure shown in (a). Scale bar indicates 25 μm.

Fig. 4
Fig. 4

EDX spectra of (a) line structure fabricated by femtosecond laser irradiation of the mixture, (b) a position that the laser did not irradiated in the same sample, and (c) PDMS line structure fabricated without silver ions by femtosecond laser irradiation.

Fig. 5
Fig. 5

Optical microscope images of silver/PDMS composite line structures fabricated by femtosecond laser irradiation of the mixture fabricated using different laser parameters. Scanning speed was 2 mm/s. (a) 1, 10, or 20 scans were used. Laser power was 60 mW. (b) Laser power of 50, 70, or 80 mW was used. Number of laser scans was 10. All the scale bars in the figures indicate 25 μm.

Fig. 6
Fig. 6

Conductivity measurement of a silver/PDMS composite line structure fabricated by femtosecond laser irradiation of the mixture deposited on a cover glass with two gold electrodes. (a) Current–voltage curve of the fabricated structure shown in (e). (b) Resistances of composite line structures fabricated by femtosecond laser irradiation of the mixture with different numbers of scans. Laser power was 60 mW. Scanning speed was 2 mm/s. (c)–(f) Corresponding optical microscope images of the line structures with different numbers of scans: (c) 2, (d) 4, (e) 10, and (f) 20 scans. All the scale bars in the figures indicate 50 μm.

Fig. 7
Fig. 7

(a)–(c) Temporal resistance profiles of the silver/PDMS composite line structures during air-blowing. Laser power was 80 mW. Scanning speed was 2 mm/s. Different numbers of laser scans were used: (a) 4, (b) 10, and (c) 20 scans. Air-blowing was applied to the line structures for 5 s at 30 s intervals, as indicated by blue areas in the figures. R0 indicates the initial resistances of the fabricated structures. (d) Average values of the maximum measured R/R0 obtained during each application of air-blowing to samples fabricated using different numbers of laser scans.