Abstract

The spectral properties of 5 at.% doped Yb:LaMgB5O10 (Yb:LMB) crystal were presented and discussed in detail. The large absorption and emission cross sections, broad emission spectral lines, and considerably good thermal conductivity indicate the considerable potential of Yb:LMB for efficient and powerful ultrashort laser application. In the experiment, the semiconductor saturable absorber mirror (SESAM) mode-locked Yb:LMB laser generated pulses with the pulse duration of 182 fs and the central wavelength of 1025.2 nm. The maximum average power was 2.49 W with the slope efficiency of 48% and the optical to optical efficiency as high as 32%. Furthermore, pulses of 148 fs with average output power of 1.52 W and 108 fs with 0.61 W were obtained based on Yb:LMB crystal. To the best of our knowledge, this is the first demonstration of mode-locked pulse generation from the Yb:LMB laser.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm

Yujin Chen, Qi Hou, Yisheng Huang, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, Zhoubin Lin, and Yidong Huang
Opt. Express 25(16) 19320-19325 (2017)

Passive femtosecond mode-locking and cw laser performance of Yb3+: Sc2SiO5

Wei De Tan, Dingyuan Tang, Xiaodong Xu, Jian Zhang, Changwen Xu, Feng Xu, Lihe Zheng, Liangbi Su, and Jun Xu
Opt. Express 18(16) 16739-16744 (2010)

CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser

Hiroaki Nakao, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, and Takagimi Yanagitani
Opt. Express 20(14) 15385-15391 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Greborio, A. Guandalini, and J. Aus der Au, “Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators,” Proc. SPIE 8235, 823511 (2012).
  2. G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719–2721 (2006).
    [PubMed]
  3. H. Zhao and A. Major, “Megawatt peak power level sub-100 fs Yb:KGW oscillators,” Opt. Express 22(25), 30425–30431 (2014).
    [PubMed]
  4. V. E. Kisel, A. S. Rudenkov, A. A. Pavlyuk, A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, N. N. Rubtsova, B. R. Semyagin, and N. V. Kuleshov, “High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser,” Opt. Lett. 40(12), 2707–2710 (2015).
    [PubMed]
  5. Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).
  6. H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
    [PubMed]
  7. Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
  8. Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
    [PubMed]
  9. Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).
  10. A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).
  11. A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).
  12. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
  13. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
  14. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
    [PubMed]
  15. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
    [PubMed]
  16. F. Pirzio, S. D. Cafiso, M. Kemnitzer, A. Guandalini, F. Kienle, S. Veronesi, M. Tonelli, J. Aus der Au, and A. Agnesi, “Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode,” Opt. Express 23(8), 9790–9795 (2015).
    [PubMed]
  17. J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett. 30(11), 1345–1347 (2005).
    [PubMed]
  18. S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).
  19. H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).
  20. J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).
  21. P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).
  22. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
    [PubMed]
  23. J. Ma, H. Huang, K. Ning, X. Xu, G. Xie, L. Qian, K. P. Loh, and D. Tang, “Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser,” Opt. Lett. 41(5), 890–893 (2016).
    [PubMed]
  24. X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, and X. Tao, “Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber,” Opt. Lett. 41(9), 1945–1948 (2016).
    [PubMed]

2017 (2)

Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[PubMed]

2016 (2)

2015 (6)

2014 (1)

2013 (1)

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

2012 (1)

A. Greborio, A. Guandalini, and J. Aus der Au, “Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators,” Proc. SPIE 8235, 823511 (2012).

2011 (1)

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

2006 (1)

2005 (1)

2003 (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

2002 (2)

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[PubMed]

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

2001 (1)

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

1997 (3)

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
[PubMed]

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

Agnesi, A.

Aka, G.

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[PubMed]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Andres, H.

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

Augé, F.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Aus der Au, J.

Balembois, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[PubMed]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Blasse, G.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).

Boulon, G.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

Brenier, A.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

Brun, A.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Cafiso, S. D.

Chambaret, J. P.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

Chen, H.

Chen, H. B.

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Chen, Y.

Chénais, S.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[PubMed]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

Druon, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[PubMed]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Ellens, A.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).

Fan, D.

Fan, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Gaumé, R.

Georges, P.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[PubMed]

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Goldner, P.

Gong, X.

Greborio, A.

A. Greborio, A. Guandalini, and J. Aus der Au, “Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators,” Proc. SPIE 8235, 823511 (2012).

Guandalini, A.

Guo, Z.

Hao, X. P.

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

He, J.

He, J. L.

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

Heerdt, T.

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).

Holtom, G. R.

Hou, Q.

Hu, Q.

Hu, X. B.

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

Huang, H.

Huang, J.

Huang, Y.

Huang, Y. S.

Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Huber, G.

Jia, Z.

Jiang, H. D.

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

Kemnitzer, M.

Kienle, F.

Kisel, V. E.

Kopf, D.

Kovalyov, A. A.

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

Kuleshov, N. V.

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

Lagatsky, A. A.

Li, B.

Li, X. L.

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

Liao, W.

Lin, Y.

Lin, Z.

Lin, Z. B.

Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Loh, K. P.

Lu, S.

Lucas-Leclin, G.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Luo, Z.

Ma, J.

Major, A.

Meijerink, A.

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

Mikhailov, V. P.

Mohr, S.

Ning, K.

Pavlyuk, A. A.

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

Petit, J.

Pirzio, F.

Podlipensky, A. V.

Preobrazhenskii, V. V.

Putyato, M. A.

Qian, L.

Raybaut, P.

Rubtsova, N. N.

Rudenkov, A. S.

Semyagin, B. R.

Shen, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

Su, X.

Sun, S. J.

Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Tang, D.

Tang, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Tang, P. H.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Tao, X.

Teng, B.

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

Ter Heerdt, M. L. H.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

Tonelli, M.

Veronesi, S.

Viana, B.

Vivien, D.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Wang, G. F.

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Wang, J. Y.

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

Wang, P.

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

Wang, Y.

X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, and X. Tao, “Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber,” Opt. Lett. 41(9), 1945–1948 (2016).
[PubMed]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Weh, R. T.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

Wen, S. C.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Wu, Y. Z.

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

Xie, G.

Xu, J. L.

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

Xu, X.

Yang, K.

Yang, K. J.

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

Yang, Y.

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

Yuan, F. F.

Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Zavelani-Rossi, M.

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Zhang, B.

Zhang, C. Q.

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

Zhang, G.

H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
[PubMed]

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Zhang, H.

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[PubMed]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Zhang, H. J.

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

Zhang, L. Z.

Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Zhang, X. Q.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Zhao, C. J.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

Zhao, H.

Zhao, R.

Zhao, W.

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Zhou, W. W.

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

Appl. Phys. B (1)

S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, M. Zavelani-Rossi, F. Augé, J. P. Chambaret, G. Aka, and D. Vivien, “Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser,” Appl. Phys. B 72, 389–393 (2001).

Appl. Phys. Lett. (1)

J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

Chem. Phys. Lett. (1)

H. D. Jiang, J. Y. Wang, H. J. Zhang, X. B. Hu, B. Teng, C. Q. Zhang, and P. Wang, “Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal,” Chem. Phys. Lett. 357, 15–19 (2002).

CrystEngComm (1)

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10-a new laser material,” CrystEngComm 17, 7392–7397 (2015).

IEEE J. Quantum Electron. (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).

IEEE Photonics J. (1)

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5, 1500707 (2013).

J. Alloys Compd. (2)

Y. S. Huang, H. B. Chen, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, G. Zhang, and G. F. Wang, “Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal-A new promising laser material,” J. Alloys Compd. 646, 1083–1088 (2015).

Y. S. Huang, S. J. Sun, F. F. Yuan, L. Z. Zhang, and Z. B. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).

Opt. Express (4)

Opt. Lett. (8)

J. Ma, H. Huang, K. Ning, X. Xu, G. Xie, L. Qian, K. P. Loh, and D. Tang, “Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser,” Opt. Lett. 41(5), 890–893 (2016).
[PubMed]

X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, and X. Tao, “Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber,” Opt. Lett. 41(9), 1945–1948 (2016).
[PubMed]

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett. 30(11), 1345–1347 (2005).
[PubMed]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
[PubMed]

F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)4 femtosecond laser,” Opt. Lett. 27(3), 197–199 (2002).
[PubMed]

V. E. Kisel, A. S. Rudenkov, A. A. Pavlyuk, A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, N. N. Rubtsova, B. R. Semyagin, and N. V. Kuleshov, “High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser,” Opt. Lett. 40(12), 2707–2710 (2015).
[PubMed]

G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719–2721 (2006).
[PubMed]

H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
[PubMed]

Opt. Mater. (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).

Phys. Rev. B (2)

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B 55, 173–179 (1997).

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Weh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength,” Phys. Rev. B 55, 180–186 (1997).

Proc. SPIE (1)

A. Greborio, A. Guandalini, and J. Aus der Au, “Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators,” Proc. SPIE 8235, 823511 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Absorption cross-sections of Yb:LMB versus wavelength at room temperature (RT).
Fig. 2
Fig. 2 Fluorescence spectra of Yb:LMB at 77 K with Yb3+ energy level scheme (inset).
Fig. 3
Fig. 3 Emission cross sections of Yb:LMB versus wavelength at RT.
Fig. 4
Fig. 4 σg(λ) of Yb:LMB versus wavelength. (a) E//X. (b) E//Y. (c) E//Z.
Fig. 5
Fig. 5 Experimental setup of the mode-locked laser. M1, flat input mirror: dichroic mirror coated for high transmission (HT) at the pump wavelength and high reflection (HR) in 1010-1100 nm; M2 and M3, HR fold mirrors. GTI1, GTI2: HR Gires-Tournois interferometer mirrors with dispersion of −1250 and −550 fs2 per reflection, respectively; M4: output coupler.
Fig. 6
Fig. 6 Average output power as a function of the absorbed pump power.
Fig. 7
Fig. 7 (a) Typical mode-locked pulses trains recorded in 20 ns and 1 ms per division (div) time scale. (b) The recorded frequency spectrum of the mode-locked laser (resolution bandwidth (RBW): 30 Hz). Inset: 1 GHz wide-span spectrum (RBW: 11 kHz).
Fig. 8
Fig. 8 (a) Autocorrelation trace and (b) spectrum of the Yb:LMB laser using Toc = 8%.
Fig. 9
Fig. 9 (a) Autocorrelation trace and (b) spectrum of the Yb:LMB laser using Toc = 5%.
Fig. 10
Fig. 10 (a) Autocorrelation trace and (b) spectrum of the Yb:LMB laser using Toc = 2%.

Tables (1)

Tables Icon

Table 1 Comparison of Spectroscopic Properties between Yb:LMB and several typical Yb-crystals.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ em (λ)= σ abs (λ) Z l Z u exp( ( h c λ ZL h c λ )/kT )
Z a = i d i a exp(- E i a /kT)
σ g (λ)=β σ em (λ)(1β) σ abs (λ)

Metrics