Abstract

We report on the optical properties of volume Bragg gratings in chloride photo-thermo-refractive glass after femtosecond laser bleaching. We show experimentally that irradiation of the gratings with femtosecond laser pulses can expand their transmission into the whole visible range without dramatic decrease of diffraction efficiency. The mechanism of glass bleaching is considered and modulation of refractive index is described in terms of the coupled wave theory for mixed volume Bragg gratings.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles

Dmitry Klyukin, Martti Silvennoinen, Victoria Krykova, Yuri Svirko, Alexander Sidorov, and Nikolay Nikonorov
Opt. Express 25(11) 12944-12951 (2017)

Thermal stability of volume Bragg gratings in chloride photo-thermo-refractive glass after femtosecond laser bleaching

Dmitry Klyukin, Sergei Ivanov, Victoria Krykova, Martti Silvennoinen, Yuri Svirko, and Nikolay Nikonorov
Opt. Lett. 43(5) 1083-1086 (2018)

Bromide photo-thermo-refractive glass for volume Bragg gratings and waveguide structure recording

Victor Dubrovin, Nikolay Nikonorov, and Alexander Ignatiev
Opt. Mater. Express 7(7) 2280-2292 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
    [Crossref]
  2. S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).
  3. N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, “New Photo-Thermo-Refractive Glasses for Holographic Optical Elements: Properties and Applications,” in Holographic Materials and Optical Systems, I. Nayadenova, D. Nazarova, and T. Babeva, eds. (InTech, 2017), pp. 435–461.
  4. J. Lumeau and E. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” International Materials Reviews 6608, 1–19 (2016).
  5. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, “High-Efficiency Bragg Gratings in Photothermorefractive Glass,” Appl. Opt. 38, 619 (1999).
    [Crossref]
  6. J. Lumeau and L. B. Glebov, “Modeling of the induced refractive index kinetics in photo-thermo-refractive glass,” Opt. Mater. Express 3, 95–104 (2013).
    [Crossref]
  7. C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
    [Crossref]
  8. D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
    [Crossref]
  9. V. Dubrovin, A. Ignatiev, and N. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6, 1701–1713 (2016).
    [Crossref]
  10. S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Characteristics of PTR Glass with Novel Modified Composition,” Radiophysics and Quantum Electronics 57, 659–664 (2015).
    [Crossref]
  11. D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
    [Crossref]
  12. S. A. Ivanov, N. V. Nikonorov, V. D. Dubrovin, and V. A. Krykova, “Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass,” in Holography: Advances and Modern Trends, vol. 10233 (2017), p. 102330E.
  13. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  14. L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A. Beléndez, “Study of angular responses of mixed amplitudeâĂŞphase holographic gratings: shifted Borrmann effect,” Opt. Lett. 26, 786–788 (2001).
    [Crossref]
  15. J. Lumeau and L. Glebov, “Mechanisms and kinetics of short pulse laser-induced destruction of silver-containing nanoparticles in multicomponent silicate photo-thermo-refractive glass,” Appl. Opt. 53, 7362–7368 (2014).
    [Crossref] [PubMed]
  16. A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: A luminescence study,” J. Luminesc. 109, 135–142 (2004).
    [Crossref]
  17. A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32, 3215–3217 (2007).
    [Crossref] [PubMed]
  18. J. Jiménez, “In situ optical study of the phase transformation kinetics of plasmonic Ag in laser-irradiated nanocomposite glass,” Journal of Non-Crystalline Solids 425, 20–23 (2015).
    [Crossref]
  19. M. Sendova-Vassileva, M. Sendova, and A. Troutt, “Laser modification of silver nanoclusters in SiO2 thin films,” Applied Physics A: Materials Science and Processing 81, 871–875 (2005).
    [Crossref]
  20. D. Ignat’ev, A. Ignat’ev, N. Nikonorov, and M. Silvennoinen, “Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 82, 734 (2015).
  21. P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
    [Crossref] [PubMed]
  22. J. Bigot, V. Halte, J. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
    [Crossref]
  23. S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
    [Crossref]
  24. R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.
  25. M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16, 6528 (2008).
    [Crossref] [PubMed]

2017 (1)

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

2016 (2)

J. Lumeau and E. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” International Materials Reviews 6608, 1–19 (2016).

V. Dubrovin, A. Ignatiev, and N. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6, 1701–1713 (2016).
[Crossref]

2015 (3)

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Characteristics of PTR Glass with Novel Modified Composition,” Radiophysics and Quantum Electronics 57, 659–664 (2015).
[Crossref]

J. Jiménez, “In situ optical study of the phase transformation kinetics of plasmonic Ag in laser-irradiated nanocomposite glass,” Journal of Non-Crystalline Solids 425, 20–23 (2015).
[Crossref]

D. Ignat’ev, A. Ignat’ev, N. Nikonorov, and M. Silvennoinen, “Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 82, 734 (2015).

2014 (1)

J. Lumeau and L. Glebov, “Mechanisms and kinetics of short pulse laser-induced destruction of silver-containing nanoparticles in multicomponent silicate photo-thermo-refractive glass,” Appl. Opt. 53, 7362–7368 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

2011 (3)

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
[Crossref]

D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

M. Sendova-Vassileva, M. Sendova, and A. Troutt, “Laser modification of silver nanoclusters in SiO2 thin films,” Applied Physics A: Materials Science and Processing 81, 871–875 (2005).
[Crossref]

2004 (1)

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: A luminescence study,” J. Luminesc. 109, 135–142 (2004).
[Crossref]

2001 (1)

2000 (1)

J. Bigot, V. Halte, J. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

1999 (1)

1991 (1)

S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).

1978 (1)

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Aseev, V. A.

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Characteristics of PTR Glass with Novel Modified Composition,” Radiophysics and Quantum Electronics 57, 659–664 (2015).
[Crossref]

Beall, G. H.

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[Crossref]

Beléndez, A.

Bigot, J.

J. Bigot, V. Halte, J. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Blaya, S.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.

R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.

Carretero, L.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.

R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.

Daunois, A.

J. Bigot, V. Halte, J. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Drevensek-Olenik, I.

Dubrovin, V.

V. Dubrovin, A. Ignatiev, and N. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6, 1701–1713 (2016).
[Crossref]

N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, “New Photo-Thermo-Refractive Glasses for Holographic Optical Elements: Properties and Applications,” in Holographic Materials and Optical Systems, I. Nayadenova, D. Nazarova, and T. Babeva, eds. (InTech, 2017), pp. 435–461.

Dubrovin, V. D.

S. A. Ivanov, N. V. Nikonorov, V. D. Dubrovin, and V. A. Krykova, “Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass,” in Holography: Advances and Modern Trends, vol. 10233 (2017), p. 102330E.

Efimov, O.

Ellabban, M.

Fally, M.

Fimia, A.

Garnov, S. V.

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Glebov, L.

J. Lumeau and L. Glebov, “Mechanisms and kinetics of short pulse laser-induced destruction of silver-containing nanoparticles in multicomponent silicate photo-thermo-refractive glass,” Appl. Opt. 53, 7362–7368 (2014).
[Crossref] [PubMed]

O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, “High-Efficiency Bragg Gratings in Photothermorefractive Glass,” Appl. Opt. 38, 619 (1999).
[Crossref]

Glebov, L. B.

Glebova, L.

Graener, H.

A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32, 3215–3217 (2007).
[Crossref] [PubMed]

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: A luminescence study,” J. Luminesc. 109, 135–142 (2004).
[Crossref]

Grebenev, V.

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: A luminescence study,” J. Luminesc. 109, 135–142 (2004).
[Crossref]

Halte, V.

J. Bigot, V. Halte, J. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Hashimoto, S.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

Ignat’ev, A.

D. Ignat’ev, A. Ignat’ev, N. Nikonorov, and M. Silvennoinen, “Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 82, 734 (2015).

Ignat’ev, D.

D. Ignat’ev, A. Ignat’ev, N. Nikonorov, and M. Silvennoinen, “Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 82, 734 (2015).

Ignatiev, A.

V. Dubrovin, A. Ignatiev, and N. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6, 1701–1713 (2016).
[Crossref]

N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, “New Photo-Thermo-Refractive Glasses for Holographic Optical Elements: Properties and Applications,” in Holographic Materials and Optical Systems, I. Nayadenova, D. Nazarova, and T. Babeva, eds. (InTech, 2017), pp. 435–461.

Ignatiev, A. I.

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Characteristics of PTR Glass with Novel Modified Composition,” Radiophysics and Quantum Electronics 57, 659–664 (2015).
[Crossref]

Ivanov, S.

N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, “New Photo-Thermo-Refractive Glasses for Holographic Optical Elements: Properties and Applications,” in Holographic Materials and Optical Systems, I. Nayadenova, D. Nazarova, and T. Babeva, eds. (InTech, 2017), pp. 435–461.

Ivanov, S. A.

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Characteristics of PTR Glass with Novel Modified Composition,” Radiophysics and Quantum Electronics 57, 659–664 (2015).
[Crossref]

S. A. Ivanov, N. V. Nikonorov, V. D. Dubrovin, and V. A. Krykova, “Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass,” in Holography: Advances and Modern Trends, vol. 10233 (2017), p. 102330E.

Jiménez, J.

J. Jiménez, “In situ optical study of the phase transformation kinetics of plasmonic Ag in laser-irradiated nanocomposite glass,” Journal of Non-Crystalline Solids 425, 20–23 (2015).
[Crossref]

Klyukin, D.

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Krykova, V.

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

Krykova, V. A.

S. A. Ivanov, N. V. Nikonorov, V. D. Dubrovin, and V. A. Krykova, “Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass,” in Holography: Advances and Modern Trends, vol. 10233 (2017), p. 102330E.

Kuchinskii, S.

S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).

Kudriašov, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
[Crossref]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.

R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.

Lumeau, J.

J. Lumeau and E. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” International Materials Reviews 6608, 1–19 (2016).

J. Lumeau and L. Glebov, “Mechanisms and kinetics of short pulse laser-induced destruction of silver-containing nanoparticles in multicomponent silicate photo-thermo-refractive glass,” Appl. Opt. 53, 7362–7368 (2014).
[Crossref] [PubMed]

J. Lumeau and L. B. Glebov, “Modeling of the induced refractive index kinetics in photo-thermo-refractive glass,” Opt. Mater. Express 3, 95–104 (2013).
[Crossref]

Madrigal, R. F.

Malinauskas, M.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
[Crossref]

Merle, J.

J. Bigot, V. Halte, J. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Nikonorov, N.

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

V. Dubrovin, A. Ignatiev, and N. Nikonorov, “Chloride photo-thermo-refractive glasses,” Opt. Mater. Express 6, 1701–1713 (2016).
[Crossref]

D. Ignat’ev, A. Ignat’ev, N. Nikonorov, and M. Silvennoinen, “Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 82, 734 (2015).

S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).

N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, “New Photo-Thermo-Refractive Glasses for Holographic Optical Elements: Properties and Applications,” in Holographic Materials and Optical Systems, I. Nayadenova, D. Nazarova, and T. Babeva, eds. (InTech, 2017), pp. 435–461.

Nikonorov, N. V.

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Characteristics of PTR Glass with Novel Modified Composition,” Radiophysics and Quantum Electronics 57, 659–664 (2015).
[Crossref]

S. A. Ivanov, N. V. Nikonorov, V. D. Dubrovin, and V. A. Krykova, “Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass,” in Holography: Advances and Modern Trends, vol. 10233 (2017), p. 102330E.

Nolte, S.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
[Crossref]

Obraztsov, A. N.

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Obraztsov, P. A.

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Obraztsova, E. D.

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Paipulas, D.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
[Crossref]

Panysheva, E.

S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).

Pierson, J. E.

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[Crossref]

Podlipensky, A.

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: A luminescence study,” J. Luminesc. 109, 135–142 (2004).
[Crossref]

Richardson, K.

Richter, D.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
[Crossref]

Rybin, M. G.

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Savvin, V.

S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).

Seifert, G.

A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32, 3215–3217 (2007).
[Crossref] [PubMed]

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: A luminescence study,” J. Luminesc. 109, 135–142 (2004).
[Crossref]

Sendova, M.

M. Sendova-Vassileva, M. Sendova, and A. Troutt, “Laser modification of silver nanoclusters in SiO2 thin films,” Applied Physics A: Materials Science and Processing 81, 871–875 (2005).
[Crossref]

Sendova-Vassileva, M.

M. Sendova-Vassileva, M. Sendova, and A. Troutt, “Laser modification of silver nanoclusters in SiO2 thin films,” Applied Physics A: Materials Science and Processing 81, 871–875 (2005).
[Crossref]

Sidorov, A.

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

Silvennoinen, M.

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

D. Ignat’ev, A. Ignat’ev, N. Nikonorov, and M. Silvennoinen, “Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 82, 734 (2015).

Sirutkaitis, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
[Crossref]

SmilgevÇRcius, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
[Crossref]

Smirnov, V.

Stalmashonak, A.

Stookey, S. D.

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[Crossref]

Svirko, Y.

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

Svirko, Y. P.

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Thomas, J.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
[Crossref]

Troutt, A.

M. Sendova-Vassileva, M. Sendova, and A. Troutt, “Laser modification of silver nanoclusters in SiO2 thin films,” Applied Physics A: Materials Science and Processing 81, 871–875 (2005).
[Crossref]

Tunimanova, I.

S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).

Tünnermann, A.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
[Crossref]

Tyurnina, A. V.

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Uwada, T.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

Voigtländer, C.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
[Crossref]

Werner, D.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

Zanotto, E.

J. Lumeau and E. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” International Materials Reviews 6608, 1–19 (2016).

Appl. Opt (1)

J. Lumeau and L. Glebov, “Mechanisms and kinetics of short pulse laser-induced destruction of silver-containing nanoparticles in multicomponent silicate photo-thermo-refractive glass,” Appl. Opt. 53, 7362–7368 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. A Mater. Sci. Process (1)

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys. A Mater. Sci. Process 102, 35–38 (2011).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

D. Paipulas, V. Kudriašov, M. Malinauskas, V. SmilgevÇŘcius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 104, 769–773 (2011).
[Crossref]

Applied Physics A: Materials Science and Processing (1)

M. Sendova-Vassileva, M. Sendova, and A. Troutt, “Laser modification of silver nanoclusters in SiO2 thin films,” Applied Physics A: Materials Science and Processing 81, 871–875 (2005).
[Crossref]

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Chem. Phys. (1)

J. Bigot, V. Halte, J. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

International Materials Reviews (1)

J. Lumeau and E. Zanotto, “A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass,” International Materials Reviews 6608, 1–19 (2016).

J. Appl. Phys. (1)

S. D. Stookey, G. H. Beall, and J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[Crossref]

J. Luminesc. (1)

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: A luminescence study,” J. Luminesc. 109, 135–142 (2004).
[Crossref]

Journal of Non-Crystalline Solids (1)

J. Jiménez, “In situ optical study of the phase transformation kinetics of plasmonic Ag in laser-irradiated nanocomposite glass,” Journal of Non-Crystalline Solids 425, 20–23 (2015).
[Crossref]

Journal of Optical Technology (A Translation of Opticheskii Zhurnal) (1)

D. Ignat’ev, A. Ignat’ev, N. Nikonorov, and M. Silvennoinen, “Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 82, 734 (2015).

Journal of Photochemistry and Photobiology C: Photochemistry Reviews (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 28–54 (2012).
[Crossref]

Nano Lett. (1)

P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, “Broadband light-induced absorbance change in multilayer graphene,” Nano Lett. 11, 1540–1545 (2011).
[Crossref] [PubMed]

Opt. Express (2)

D. Klyukin, M. Silvennoinen, V. Krykova, Y. Svirko, A. Sidorov, and N. Nikonorov, “Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles,” Opt. Express 25, 135–142 (2017).
[Crossref]

M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16, 6528 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (2)

Optics and Spectroscopy (1)

S. Kuchinskii, N. Nikonorov, E. Panysheva, V. Savvin, and I. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Optics and Spectroscopy 70, 1286–1300 (1991).

Radiophysics and Quantum Electronics (1)

S. A. Ivanov, A. I. Ignatiev, N. V. Nikonorov, and V. A. Aseev, “Characteristics of PTR Glass with Novel Modified Composition,” Radiophysics and Quantum Electronics 57, 659–664 (2015).
[Crossref]

Other (3)

N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, “New Photo-Thermo-Refractive Glasses for Holographic Optical Elements: Properties and Applications,” in Holographic Materials and Optical Systems, I. Nayadenova, D. Nazarova, and T. Babeva, eds. (InTech, 2017), pp. 435–461.

S. A. Ivanov, N. V. Nikonorov, V. D. Dubrovin, and V. A. Krykova, “Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass,” in Holography: Advances and Modern Trends, vol. 10233 (2017), p. 102330E.

R. J. Collier, C. B. Burckhardt, L. H. Lin, R. J. Collier, C. B. Burckhardt, and L. H. Lin, “Diffraction from volume holograms,” in Optical Holography (Elsevier, 1971), pp. 228–264.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Optical density change depending on single pump pulse energy and different polarization states of probe pulses. (b) Optical density spectra of chloride PTR glass with recorded VBG before (21 hours of thermal treatment at 546°C) and after full femtosecond laser bleaching. Inset: optical density spectrum of the same glass after 10 hours of thermal treatment at 546°C
Fig. 2
Fig. 2 The mechanism for bleaching of AgNPs hologram.
Fig. 3
Fig. 3 Experimental angular selectivity contours before (a) and after (b) femtosecond laser bleaching.
Fig. 4
Fig. 4 (a) RIMA before and after laser bleaching of VBGs. (b) Difference of RIMA before and after laser bleaching (curve with squares) and AIMA before laser bleaching (curve with circles)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

c R R + α R = i χ S
c s S + ( α + i Γ ) S = i χ R
χ = π n 1 λ i a 1 2
η t ( θ ) = exp ( 2 α T / cos θ ) z 0 [ ( ϑ 2 + z 0 ) 2 cosh ( z 0 T cos ψ 0 cos θ ) ( ϑ 2 + z 0 ) 2 cos ( z 0 T sin ψ 0 cos θ ) + ϑ z 0 sin ψ 0 sinh ( z 0 T cos ψ 0 cos θ ) ϑ z 0 cos ψ 0 sin ( z 0 T sin ψ 0 cos θ ) ]
z 0 = ϑ 2 + 4 [ ( π n 1 π ) 2 + ( i α 1 2 ) 2 ] 2 + ( 8 i α 1 2 π n 1 λ ) 2
ϑ = 4 π n 0 sin θ b λ ( sin θ sin θ b )
2 ψ 0 = arccos ( { ϑ 2 + 4 [ ( π n 1 λ ) 2 ( i α 1 2 ) 2 ] 2 } 1 z 0 )

Metrics