Abstract

Three-dimensional laser-induced crystallization of glass via localized heating by focused femtosecond laser irradiation promises the ability to create photonic integrated circuits. However, little work thus far has been done to demonstrate the feasibility of this technique to create crystals in rare earth-doped glasses that may serve as active elements of the circuit, such as lasers. To that end, crystals were grown in ErxLa1−xBGeO5 (x = 0.0, 0.01, 0.04) glasses via this technique and characterized using Raman and fluorescence spectroscopy. Erbium was found to be primarily incorporated within the crystal at the lanthanum site and its energy levels were quantified. The influence of different glass compositions and laser irradiation parameters on the strain gradient within the crystal cross-section as well as the erbium fluorescence is discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation

Adam Stone, Masaaki Sakakura, Yasuhiko Shimotsuma, Greg Stone, Pradyumna Gupta, Kiyotaka Miura, Kazuyuki Hirao, Volkmar Dierolf, and Himanshu Jain
Opt. Express 17(25) 23284-23289 (2009)

Spectroscopic and lasing properties of Er3+/Yb3+-doped fluorophosphate glass with small additives of phosphates

E. Kolobkova, A. Alkhlef, A. Yasukevich, and A. Babkina
Opt. Mater. Express 9(9) 3666-3679 (2019)

Optical spectroscopy, 1.5μm emission, and upconversion properties of Er3+-doped metaphosphate laser glasses

P. Babu, Hyo Jin Seo, Kyoung Hyuk Jang, R. Balakrishnaiah, C. K. Jayasankar, Ki-Soo Lim, and V. Lavín
J. Opt. Soc. Am. B 24(9) 2218-2228 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [Crossref]
  2. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [Crossref] [PubMed]
  3. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
    [Crossref]
  4. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
    [Crossref]
  5. K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
    [Crossref] [PubMed]
  6. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
    [Crossref]
  7. B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21, 83–87 (2004).
    [Crossref]
  8. Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
    [Crossref]
  9. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
    [Crossref]
  10. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
    [Crossref]
  11. B. Zhu, Y. Dai, H. Ma, Z. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
    [Crossref] [PubMed]
  12. Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
    [Crossref] [PubMed]
  13. C. Fan, B. Poumellec, M. Lancry, X. He, H. Zeng, A. Erraji-Chahid, Q. Lu, and G. Chen, “Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation,” Opt. Lett. 37, 2955–2957 (2012).
    [Crossref] [PubMed]
  14. X. He, C. Fan, B. Poumellec, Q. Liu, H. Zeng, F. Brisset, G. Chen, Z. Zhao, and M. Lancry, “Size-controlled oriented crystallization in SiO2-based glasses by femtosecond laser irradiation,” J. Opt. Soc. Am. B 31, 376–381 (2014).
    [Crossref]
  15. A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
    [Crossref]
  16. S. Zhang, G. Wu, C. Duan, and J. Wang, “Novel phosphors of Eu3+, Tb3+ or Tm3+ activated LaBGeO5,” Journal of Rare Earths 29, 737–740 (2011).
    [Crossref]
  17. A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
    [Crossref]
  18. J. Capmany, D. Jaque, J.G. Solé, and A. Kaminskii, “Continuous wave laser radiation at 524nm from a self-frequency-doubled laser of LaBGeO5Nd3+,” Appl. Phys. Lett. 72, 531–533 (1998).
    [Crossref]
  19. A. Rulmont and P. Tarte, “Lanthanide borogermanates Ln BGeO5: Synthesis and structural study by x-ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75, 244–250 (1988).
    [Crossref]
  20. G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
    [Crossref]
  21. V. Sigaev, S. Stefanovich, P. Sarkisov, and E. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physiochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).
  22. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimtosuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
    [Crossref]
  23. K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64, 787–791 (1996).
    [Crossref]
  24. I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
    [Crossref]
  25. A. Stone, “Three-dimensional fabrication of functional single crystal waveguides inside glass by femtosecond laser irradiation,” Ph.D. dissertation, Lehigh University, 2014.
  26. C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
    [Crossref]

2017 (1)

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

2015 (1)

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (1)

2011 (2)

S. Zhang, G. Wu, C. Duan, and J. Wang, “Novel phosphors of Eu3+, Tb3+ or Tm3+ activated LaBGeO5,” Journal of Rare Earths 29, 737–740 (2011).
[Crossref]

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

2008 (2)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[Crossref]

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[Crossref] [PubMed]

2007 (4)

B. Zhu, Y. Dai, H. Ma, Z. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

2005 (2)

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[Crossref] [PubMed]

2004 (1)

2000 (1)

1999 (1)

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

1998 (1)

J. Capmany, D. Jaque, J.G. Solé, and A. Kaminskii, “Continuous wave laser radiation at 524nm from a self-frequency-doubled laser of LaBGeO5Nd3+,” Appl. Phys. Lett. 72, 531–533 (1998).
[Crossref]

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

1996 (1)

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64, 787–791 (1996).
[Crossref]

1994 (2)

V. Sigaev, S. Stefanovich, P. Sarkisov, and E. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physiochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

1991 (1)

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

1988 (1)

A. Rulmont and P. Tarte, “Lanthanide borogermanates Ln BGeO5: Synthesis and structural study by x-ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75, 244–250 (1988).
[Crossref]

Agoston, S.

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64, 787–791 (1996).
[Crossref]

Aitken, B.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Antic-Fidancev, A.

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

Arai, A.

Araki, R.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[Crossref]

Aride, J.

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

Boukhari, A.

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

Bovatsek, J.

Brisset, F.

Butashin, A.

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Cao, S.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Capmany, J.

J. Capmany, D. Jaque, J.G. Solé, and A. Kaminskii, “Continuous wave laser radiation at 524nm from a self-frequency-doubled laser of LaBGeO5Nd3+,” Appl. Phys. Lett. 72, 531–533 (1998).
[Crossref]

Champagnon, B.

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

Chen, B.

Chen, G.

Coussa, C.

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

Dai, Y.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[Crossref] [PubMed]

B. Zhu, Y. Dai, H. Ma, Z. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Dashkevich, V.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

Dierolf, V.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimtosuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
[Crossref]

Duan, C.

S. Zhang, G. Wu, C. Duan, and J. Wang, “Novel phosphors of Eu3+, Tb3+ or Tm3+ activated LaBGeO5,” Journal of Rare Earths 29, 737–740 (2011).
[Crossref]

Eaton, S.

Edmondson, K.

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64, 787–791 (1996).
[Crossref]

Erraji-Chahid, A.

Fan, C.

Fujita, K.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[Crossref]

Golubev, N.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

Gregora, I.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Grosvalet, L.

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

He, X.

Herman, P.

Hirao, K.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimtosuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[Crossref]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21, 83–87 (2004).
[Crossref]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Hrubá, I.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Ivannikov, D.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Jain, H.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimtosuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
[Crossref]

Jaque, D.

J. Capmany, D. Jaque, J.G. Solé, and A. Kaminskii, “Continuous wave laser radiation at 524nm from a self-frequency-doubled laser of LaBGeO5Nd3+,” Appl. Phys. Lett. 72, 531–533 (1998).
[Crossref]

Jiang, X.

Kamba, S.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Kaminskii, A.

J. Capmany, D. Jaque, J.G. Solé, and A. Kaminskii, “Continuous wave laser radiation at 524nm from a self-frequency-doubled laser of LaBGeO5Nd3+,” Appl. Phys. Lett. 72, 531–533 (1998).
[Crossref]

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Kashyap, R.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

Khodasevich, I.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

Komandin, G.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Lancry, M.

Lapointe, J.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

Lemaire-Blaise, M.

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

Lin, G.

Liu, Q.

Lopatina, E.

V. Sigaev, S. Stefanovich, P. Sarkisov, and E. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physiochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Lu, B.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

Lu, Q.

Ma, H.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[Crossref] [PubMed]

B. Zhu, Y. Dai, H. Ma, Z. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

Maleshkevich, G.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

Martinet, C.

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

Maslyanizin, I.

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

McAnany, S.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Mill, B.

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Mironov, V.

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Mitsuyu, T.

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Miura, K.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimtosuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[Crossref]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[Crossref]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Mudryi, A.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

Nolan, D.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Porcher, P.

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

Poumellec, B.

Ptzelt, J.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Qiu, J.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[Crossref] [PubMed]

B. Zhu, Y. Dai, H. Ma, Z. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21, 83–87 (2004).
[Crossref]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Ranganathan, R.

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64, 787–791 (1996).
[Crossref]

Rozov, S.

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Rulmont, A.

A. Rulmont and P. Tarte, “Lanthanide borogermanates Ln BGeO5: Synthesis and structural study by x-ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75, 244–250 (1988).
[Crossref]

Sakakura, M.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimtosuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[Crossref]

Sarkisov, P.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

V. Sigaev, S. Stefanovich, P. Sarkisov, and E. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physiochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Sarkisov, S.

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Savinkov, V.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

Serhan, K.

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

Shah, L.

Shigorin, V.

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Shimizu, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[Crossref]

Shimotsuma, Y.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[Crossref]

Shimtosuma, Y.

Sigaev, V.

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

V. Sigaev, S. Stefanovich, P. Sarkisov, and E. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physiochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Solé, J.G.

J. Capmany, D. Jaque, J.G. Solé, and A. Kaminskii, “Continuous wave laser radiation at 524nm from a self-frequency-doubled laser of LaBGeO5Nd3+,” Appl. Phys. Lett. 72, 531–533 (1998).
[Crossref]

Stefanovich, S.

V. Sigaev, S. Stefanovich, P. Sarkisov, and E. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physiochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

Stone, A.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimtosuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
[Crossref]

A. Stone, “Three-dimensional fabrication of functional single crystal waveguides inside glass by femtosecond laser irradiation,” Ph.D. dissertation, Lehigh University, 2014.

Strukov, B.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Taibi, M.

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

Tarte, P.

A. Rulmont and P. Tarte, “Lanthanide borogermanates Ln BGeO5: Synthesis and structural study by x-ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75, 244–250 (1988).
[Crossref]

Veenhuizen, K.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Volkov, A.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Vouagner, D.

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

Wang, J.

S. Zhang, G. Wu, C. Duan, and J. Wang, “Novel phosphors of Eu3+, Tb3+ or Tm3+ activated LaBGeO5,” Journal of Rare Earths 29, 737–740 (2011).
[Crossref]

Wu, G.

S. Zhang, G. Wu, C. Duan, and J. Wang, “Novel phosphors of Eu3+, Tb3+ or Tm3+ activated LaBGeO5,” Journal of Rare Earths 29, 737–740 (2011).
[Crossref]

Yang, X.

Yonesaki, Y.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[Crossref]

Yoshino, F.

Yu, B.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21, 83–87 (2004).
[Crossref]

Zeng, H.

Zhang, H.

Zhang, S.

S. Zhang, G. Wu, C. Duan, and J. Wang, “Novel phosphors of Eu3+, Tb3+ or Tm3+ activated LaBGeO5,” Journal of Rare Earths 29, 737–740 (2011).
[Crossref]

Zhang, Z.

Zhao, Z.

Zhu, B.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[Crossref] [PubMed]

B. Zhu, Y. Dai, H. Ma, Z. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069–6074 (2007).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Zhu, C.

Zikmund, Z.

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Am. J. Phys. (1)

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64, 787–791 (1996).
[Crossref]

Appl. Phys. Lett. (4)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

J. Capmany, D. Jaque, J.G. Solé, and A. Kaminskii, “Continuous wave laser radiation at 524nm from a self-frequency-doubled laser of LaBGeO5Nd3+,” Appl. Phys. Lett. 72, 531–533 (1998).
[Crossref]

Chem. Phys. Lett. (1)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[Crossref]

Glass Phys. Chem. (1)

V. Sigaev, S. Stefanovich, P. Sarkisov, and E. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physiochemical properties of glasses,” Glass Phys. Chem. 20, 392–397 (1994).

J. Non-Crys. Solids (1)

G. Maleshkevich, V. Sigaev, N. Golubev, V. Savinkov, P. Sarkisov, I. Khodasevich, V. Dashkevich, and A. Mudryi, “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Crys. Solids 357, 67–72 (2011).
[Crossref]

J. Non-Cryst. Solids (1)

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Condens Matter (2)

A. Antic-Fidancev, K. Serhan, M. Taibi, M. Lemaire-Blaise, P. Porcher, J. Aride, and A. Boukhari, “The optical properties of Eu3+ embedded in the rare earth borogermanate matrix: REBGeO5,” J. Phys. Condens Matter 6, 6857–6864 (1994).
[Crossref]

C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner, and V. Sigaev, “In situ Raman spectroscopy of pressure-induced changes in LaBGeO5 glass: hysteresis and plastic deformation,” J. Phys. Condens Matter 19, 266220 (2007).
[Crossref]

J. Solid State Chem. (1)

A. Rulmont and P. Tarte, “Lanthanide borogermanates Ln BGeO5: Synthesis and structural study by x-ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75, 244–250 (1988).
[Crossref]

Journal of Rare Earths (1)

S. Zhang, G. Wu, C. Duan, and J. Wang, “Novel phosphors of Eu3+, Tb3+ or Tm3+ activated LaBGeO5,” Journal of Rare Earths 29, 737–740 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Status Solidi A (1)

A. Kaminskii, A. Butashin, I. Maslyanizin, B. Mill, V. Mironov, S. Rozov, S. Sarkisov, and V. Shigorin, “Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals,” Phys. Status Solidi A 125, 671–696 (1991).
[Crossref]

Phys. Status Solidi B (1)

I. Hrubá, S. Kamba, J. Ptzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B 214, 423–439 (1999).
[Crossref]

Sci. Rep. (2)

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser writing of ferroelectric single-crystal waveguide architecture in glass for 3D integrated optics,” Sci. Rep. 5, 10391 (2015).
[Crossref]

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Other (1)

A. Stone, “Three-dimensional fabrication of functional single crystal waveguides inside glass by femtosecond laser irradiation,” Ph.D. dissertation, Lehigh University, 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 CEES maps of 980 nm excitation and 1550 nm emission in Er.01La.99BGeO5 glass (left), glass-ceramic (center), and laser-induced crystal (right).
Fig. 2
Fig. 2 Emission (left) and excitation (right) spectra extracted from CEES maps of Er.01La.99BGeO5 (top) and Er.04La.996BGeO5 (bottom) polycrystalline glass-ceramics (solid) and laser-induced crystals in glass (dashed). The emission spectra arise due to excitation at 1.266 eV. The excitation spectra correspond to emission at 0.808 eV. Laser-induced crystal spectra have been multiplied by a factor of 10 to allow for easier comparison.
Fig. 3
Fig. 3 Fluorescence excitation spectra from CEES maps collected from laser-induced crystals in Er.01La.99BGeO5 glass grown under different conditions. The legend indicates the parameter values: writing speed (µm/s), laser power (mW), focal depth (µm), and aberration correction (yes/no). The transitions labeled A and B correspond to the   4 I 15 2, m J = 15 2   4 I 11 2, m J = 1 2 and   4 I 15 2, m J = 13 2   4 I 11 2, m J = 1 2 transitions, respectively.
Fig. 4
Fig. 4 Fluorescence intensity (red dots) as a function of chopping frequency for various crystals and the fit to Eqs. 13 and 14 in [23] (blue).
Fig. 5
Fig. 5 Raman spectra from the crystal shown in Fig. 6. The spectra are taken from successive points in the horizontal direction along y=25 µm beginning in the center of the crystal and moving outward into the glass.
Fig. 6
Fig. 6 Peak position and full width at half maximum spatial maps of the −803 cm−1 (left) and −207 cm−1 (right) Raman modes for a laser-induced crystal in undoped LaBGeO5 glass.
Fig. 7
Fig. 7 From left to right, spatially resolved maps of erbium fluorescence intensity, A(LO)18 peak position, A(LO)18 FWHM, E(TO)6 peak position, and E(TO)6 FWHM for two laser-induced crystals in Er.01La.99BGeO5 glass. The top set of maps correspond to a crystal grown with the following conditions: writing speed=15 µm/s, laser power=750 mW, focal depth=300 µm, and no aberration correction. The bottom set of maps correspond to a crystal grown with the following conditions: writing speed=10 µm/s, laser power=400 mW, focal depth=600 µm, and aberration correction.
Fig. 8
Fig. 8 From left to right, spatially resolved maps of erbium fluorescence intensity, A(LO)18 peak position, A(LO)18 FWHM, E(TO)6 peak position, and E(TO)6 FWHM for two laser-induced crystals in Er.04La.96BGeO5 glass. The top set of maps correspond to a crystal grown with the following conditions: writing speed=10 µm/s, laser power=750 mW, focal depth=600 µm, and no aberration correction. The bottom set of maps correspond to a crystal grown with the following conditions: writing speed=10 µm/s, laser power=400 mW, focal depth=600 µm, and aberration correction.
Fig. 9
Fig. 9 Raman (inset) and erbium fluorescence spectra from the crystal shown on the right in Fig. 7. The spectra are taken from successive points in the horizontal direction along y=4.5 µm (near top) beginning in the center of the crystal and moving outward into the glass.
Fig. 10
Fig. 10 Horizontal line profiles of the erbium fluorescence intensity and peak position of the A(LO)18 Raman mode from the cross-sections of the crystals shown in Fig. 7 showing the correlation of the EFI to the shift of the Raman modes due to strain. The line profiles on the left show the spectral feature behavior at y=25 µm of the crystal shown on the top of Fig. 7. The line profiles on the right show the spectral feature behavior at y=11.7 µm of the crystal shown on the bottom of Fig. 7.
Fig. 11
Fig. 11 Raman (inset) and erbium fluorescence spectra from the crystal shown on the top in Fig. 7. The spectra are taken from various points in the horizontal direction along y=23.1µm corresponding to the center of the crystal (red) and the glass (blue) as well as from the boundary (green). Specifically, the boundary spectrum is taken from the bright white region surrounding the crystal where the EFI is greatest.

Tables (2)

Tables Icon

Table 1 Observed energies (in eV) for erbium in Er.01La.99BGeO5. Levels without energy values and marked with “x” are predicted but were not observed.

Tables Icon

Table 2 Observed lifetimes, in milliseconds, of the   4 I 13 2   4 I 15 2 transition in ErxLa1−xBGeO5.

Metrics