Abstract

The anti-reflection functions of a surface nanostructure–including transparent conductive Ga-doped ZnO (GaZnO) nanoneedles (NNs), a GaZnO thin film, and buried Ag nanoparticles (NPs), on GaN and Si templates through the combination of the effects of gradient effective refractive index, index matching, and the surface plasmon (SP) resonances in the visible and infrared range–are studied by measuring its reflection, transmission, and scattering behaviors. The NNs are grown under different molecular beam epitaxy conditions with the low-temperature vapor-liquid-solid mode by using Ag NPs as growth catalyst. Based on the crystal structure study, it is found that the c-axis of a GaZnO NN is controlled by the local Ag (111) orientation of the un-melted portion of an Ag NP, which is influenced by the crystal structure of the growth template. On c-plane GaN, by using small and separate Ag NPs as catalysts, the alignment of GaN (002), Ag (111), and ZnO (002) leads to the growth of mostly vertical NNs for producing a strong anti-reflection effect. On Si (100), no crystal matching condition can be used such that the grown NNs are randomly oriented, leading to a relatively weaker anti-reflection effect. The GaZnO thin film and buried Ag NPs also make contributions to the anti-reflection function through the effects of index matching and SP resonance.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode

Yu-Feng Yao, Chun-Han Lin, Chieh Hsieh, Chia-Ying Su, Erwin Zhu, Shaobo Yang, Chi-Ming Weng, Ming-Yen Su, Meng-Che Tsai, Shang-Syuan Wu, Sheng-Hung Chen, Charng-Gan Tu, Hao-Tsung Chen, Yean-Woei Kiang, and C. C. Yang
Opt. Express 23(25) 32274-32288 (2015)

Comparison of emission characteristics between the CdZnO/ZnO quantum wells on ZnO and GaN templates

Shao-Ying Ting, Yu-Feng Yao, Wei-Lun Chung, Wen-Ming Chang, Chih-Yen Chen, Hao-Tsung Chen, Che-Hao Liao, Horng-Shyang Chen, Chieh Hsieh, and C. C. Yang
Opt. Express 20(20) 21860-21874 (2012)

K doping effect on structural and optical properties of ZnO nanorods grown on semipolar (112-2) GaN films using a hydrothermal growth method

Soohwan Jang, Pyunghee Son, Jimin Kim, Sung-Nam Lee, and Kwang Hyeon Baik
Opt. Mater. Express 5(7) 1621-1627 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).
  2. D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).
  3. S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).
  4. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [PubMed]
  5. P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).
  6. A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
    [PubMed]
  7. H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
    [PubMed]
  8. L. Zeng, X. Yu, Y. Han, and D. Yang, “Performance of silicon nanowire solar cells with phosphorus-diffused emitters,” J. Nanomater. 2012, 156986 (2012).
  9. S. H. Baek, S. B. Kim, J. K. Shin, and J. Hyun Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells 96, 251–256 (2012).
  10. X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
    [PubMed]
  11. T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).
  12. R. J. Chung, Z. C. Lin, C. A. Lin, and K. Y. Lai, “Study of an antireflection surface constructed of controlled ZnO nanostructures,” Thin Solid Films 570, 504–509 (2014).
  13. R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, “Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method,” Mater. Lett. 146, 65–68 (2015).
  14. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94, 930–934 (2010).
  15. J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
  16. Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).
  17. M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology 20(15), 155203 (2009).
    [PubMed]
  18. Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
    [PubMed]
  19. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4, 1013–1098 (2011).
  20. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [PubMed]
  21. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
  22. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [PubMed]
  23. F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(Suppl 2), A207–A220 (2010).
    [PubMed]
  24. V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006).
  25. H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm 15, 5764–5775 (2013).
  26. C. H. Hsu and D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology 21(28), 285603 (2010).
    [PubMed]
  27. Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
    [PubMed]
  28. Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
    [PubMed]
  29. C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).
  30. H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Cryst. Growth Des. 13, 572–580 (2013).

2016 (1)

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

2015 (5)

R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, “Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method,” Mater. Lett. 146, 65–68 (2015).

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

2014 (6)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

R. J. Chung, Z. C. Lin, C. A. Lin, and K. Y. Lai, “Study of an antireflection surface constructed of controlled ZnO nanostructures,” Thin Solid Films 570, 504–509 (2014).

2013 (4)

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Cryst. Growth Des. 13, 572–580 (2013).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm 15, 5764–5775 (2013).

2012 (3)

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

L. Zeng, X. Yu, Y. Han, and D. Yang, “Performance of silicon nanowire solar cells with phosphorus-diffused emitters,” J. Nanomater. 2012, 156986 (2012).

S. H. Baek, S. B. Kim, J. K. Shin, and J. Hyun Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells 96, 251–256 (2012).

2011 (3)

P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4, 1013–1098 (2011).

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[PubMed]

2010 (4)

F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(Suppl 2), A207–A220 (2010).
[PubMed]

C. H. Hsu and D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology 21(28), 285603 (2010).
[PubMed]

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94, 930–934 (2010).

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

2009 (2)

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology 20(15), 155203 (2009).
[PubMed]

2008 (1)

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
[PubMed]

2006 (1)

V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006).

Aono, M.

M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology 20(15), 155203 (2009).
[PubMed]

Ashraf, A.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Baek, S. H.

S. H. Baek, S. B. Kim, J. K. Shin, and J. Hyun Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells 96, 251–256 (2012).

Bhosle, V.

V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006).

Black, C. T.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Chang, T. W.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Chang, W. M.

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Chen, D. H.

C. H. Hsu and D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology 21(28), 285603 (2010).
[PubMed]

Chen, H. S.

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Chen, H. T.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94, 930–934 (2010).

Chen, L.

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

Chen, S. H.

Chen, W. F.

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Cheng, C. Y.

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

Chiu, H. M.

H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm 15, 5764–5775 (2013).

Chou, W. H.

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Chuang, R. W.

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

Chung, R. J.

R. J. Chung, Z. C. Lin, C. A. Lin, and K. Y. Lai, “Study of an antireflection surface constructed of controlled ZnO nanostructures,” Thin Solid Films 570, 504–509 (2014).

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Dalvand, R.

R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, “Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method,” Mater. Lett. 146, 65–68 (2015).

Dong, G.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Eisaman, M. D.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Fang, H.

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
[PubMed]

Fang, M.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Han, S.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

Han, Y.

L. Zeng, X. Yu, Y. Han, and D. Yang, “Performance of silicon nanowire solar cells with phosphorus-diffused emitters,” J. Nanomater. 2012, 156986 (2012).

Han, Z.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

Heo, J.

J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).

Ho, J. C.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Hsieh, C.

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Hsu, C. H.

C. H. Hsu and D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology 21(28), 285603 (2010).
[PubMed]

Hsu, C. M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Hsu, W. K.

H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm 15, 5764–5775 (2013).

Huang, C. Y.

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

Huang, F.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

Huang, J. J.

Husain, M.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

Hyun Kim, J.

S. H. Baek, S. B. Kim, J. K. Shin, and J. Hyun Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells 96, 251–256 (2012).

Jun, D. H.

J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).

Kar, M.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

Kiang, Y. W.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(Suppl 2), A207–A220 (2010).
[PubMed]

Kim, S. B.

S. H. Baek, S. B. Kim, J. K. Shin, and J. Hyun Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells 96, 251–256 (2012).

Krekeler, T.

H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Cryst. Growth Des. 13, 572–580 (2013).

Kumar, D.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

Kumar, V.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

Lai, K. Y.

R. J. Chung, Z. C. Lin, C. A. Lin, and K. Y. Lai, “Study of an antireflection surface constructed of controlled ZnO nanostructures,” Thin Solid Films 570, 504–509 (2014).

Lee, H.

P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).

Leem, J. W.

J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).

Li, D.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

Li, X.

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
[PubMed]

Liang, X.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Liao, C. H.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Lim, Z. S.

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

Lin, C. A.

R. J. Chung, Z. C. Lin, C. A. Lin, and K. Y. Lai, “Study of an antireflection surface constructed of controlled ZnO nanostructures,” Thin Solid Films 570, 504–509 (2014).

Lin, C. H.

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Lin, H.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Lin, Y. C.

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

Lin, Z. C.

R. J. Chung, Z. C. Lin, C. A. Lin, and K. Y. Lai, “Study of an antireflection surface constructed of controlled ZnO nanostructures,” Thin Solid Films 570, 504–509 (2014).

Mader, W.

H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Cryst. Growth Des. 13, 572–580 (2013).

Mahmud, S.

R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, “Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method,” Mater. Lett. 146, 65–68 (2015).

Makableh, Y. F.

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

Manasreh, M. O.

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

Narayan, J.

V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006).

Nusir, A. I.

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

Ooi, C. H. R.

R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, “Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method,” Mater. Lett. 146, 65–68 (2015).

Park, W. K.

J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).

Peng, Y.

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

Pignalosa, P.

P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).

Qiao, L.

P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).

Rahman, A.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Rouhi, J.

R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, “Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method,” Mater. Lett. 146, 65–68 (2015).

Sakurai, M.

M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology 20(15), 155203 (2009).
[PubMed]

Sarker, J. C.

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

Schaan, G.

H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Cryst. Growth Des. 13, 572–580 (2013).

Seal, S.

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

Shan, Y.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

Shen, C. H.

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Shih, P. Y.

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Shin, J. K.

S. H. Baek, S. B. Kim, J. K. Shin, and J. Hyun Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells 96, 251–256 (2012).

Shu, L.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Simon, H.

H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Cryst. Growth Des. 13, 572–580 (2013).

Singh, P. K.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

Song, S.

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
[PubMed]

Srivastava, S. K.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

Su, C. Y.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Su, M. Y.

Su, Y. K.

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

Su Yu, J.

J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).

Sun, K. W.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94, 930–934 (2010).

Sutter, P.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Tiwari, A.

V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006).

Tong, X.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Tsai, F. J.

Tsai, H. J.

H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm 15, 5764–5775 (2013).

Tsai, M. C.

Tseng, M.

P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).

Tu, C. G.

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Uemura, T.

M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology 20(15), 155203 (2009).
[PubMed]

Vasan, R.

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

Wan, D.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[PubMed]

Wang, J.

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

Wang, J. Y.

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Wang, Y.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

Wang, Y. G.

M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology 20(15), 155203 (2009).
[PubMed]

Wang, Z. L.

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4, 1013–1098 (2011).

Weng, C. M.

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Wu, J. M.

H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm 15, 5764–5775 (2013).

Wu, S. S.

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Wu, T. H.

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

Xin, H.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Xiu, F.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Xu, S.

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4, 1013–1098 (2011).

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
[PubMed]

Yang, C. C.

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(Suppl 2), A207–A220 (2010).
[PubMed]

Yang, D.

L. Zeng, X. Yu, Y. Han, and D. Yang, “Performance of silicon nanowire solar cells with phosphorus-diffused emitters,” J. Nanomater. 2012, 156986 (2012).

Yang, S.

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

Yao, Y. F.

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Opt. Express 23(25), 32274–32288 (2015).
[PubMed]

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

Yi, Y.

P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).

Yip, S.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

You, L.

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

Yu, X.

L. Zeng, X. Yu, Y. Han, and D. Yang, “Performance of silicon nanowire solar cells with phosphorus-diffused emitters,” J. Nanomater. 2012, 156986 (2012).

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

Zeng, L.

L. Zeng, X. Yu, Y. Han, and D. Yang, “Performance of silicon nanowire solar cells with phosphorus-diffused emitters,” J. Nanomater. 2012, 156986 (2012).

Zhang, H.

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Zheng, Z.

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

Zhu, E.

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
[PubMed]

Zhu, X.

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

ACS Appl. Mater. Interfaces (1)

Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of highly conductive Ga-doped ZnO nanoneedles,” ACS Appl. Mater. Interfaces 7(19), 10525–10533 (2015).
[PubMed]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[PubMed]

AIP Adv. (1)

P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi, “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection,” AIP Adv. 1, 032124 (2011).

Cryst. Growth Des. (1)

H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Cryst. Growth Des. 13, 572–580 (2013).

CrystEngComm (1)

H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm 15, 5764–5775 (2013).

Electrochem. Solid-State Lett. (1)

T. H. Wu, R. W. Chuang, C. Y. Huang, C. Y. Cheng, C. Y. Huang, Y. C. Lin, and Y. K. Su, “ZnO nanoneedles/ZnO:Al film stack as an anti-reflection layer for high efficiency triple junction solar cell,” Electrochem. Solid-State Lett. 15, H208–H210 (2012).

IEEE Trans. Electron Dev. (1)

C. H. Lin, Y. F. Yao, C. Y. Su, C. Hsieh, C. G. Tu, S. Yang, S. S. Wu, Y. W. Kiang, and C. C. Yang, “Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode,” IEEE Trans. Electron Dev. 62, 3742–3749 (2015).

J. Appl. Phys. (1)

V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006).

J. Nanomater. (2)

Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void structures in regularly patterned ZnO nanorods grown with the hydrothermal method,” J. Nanomater. 2014, 756401 (2014).

L. Zeng, X. Yu, Y. Han, and D. Yang, “Performance of silicon nanowire solar cells with phosphorus-diffused emitters,” J. Nanomater. 2012, 156986 (2012).

Mater. Lett. (1)

R. Dalvand, S. Mahmud, J. Rouhi, and C. H. R. Ooi, “Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method,” Mater. Lett. 146, 65–68 (2015).

Nano Lett. (2)

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[PubMed]

Nano Res. (1)

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4, 1013–1098 (2011).

Nanotechnology (3)

M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology 20(15), 155203 (2009).
[PubMed]

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology 19(25), 255703 (2008).
[PubMed]

C. H. Hsu and D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology 21(28), 285603 (2010).
[PubMed]

Nat. Commun. (1)

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).

Opt. Express (2)

Sci. Rep. (2)

Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach,” Sci. Rep. 3, 2434 (2013).
[PubMed]

X. Liang, L. Shu, H. Lin, M. Fang, H. Zhang, G. Dong, S. Yip, F. Xiu, and J. C. Ho, “Inverted silicon nanopencil array solar cells with enhanced contact structures,” Sci. Rep. 6, 34139 (2016).
[PubMed]

Sol. Energy Mater. Sol. Cells (6)

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94, 930–934 (2010).

J. W. Leem, J. Su Yu, D. H. Jun, J. Heo, and W. K. Park, “Efficiency improvement of III-V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).

Y. F. Makableh, R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating,” Sol. Energy Mater. Sol. Cells 123, 178–182 (2014).

D. Li, D. Wan, X. Zhu, Y. Wang, Z. Han, S. Han, Y. Shan, and F. Huang, “Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 130, 505–512 (2014).

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94, 1506–1511 (2010).

S. H. Baek, S. B. Kim, J. K. Shin, and J. Hyun Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells 96, 251–256 (2012).

Thin Solid Films (1)

R. J. Chung, Z. C. Lin, C. A. Lin, and K. Y. Lai, “Study of an antireflection surface constructed of controlled ZnO nanostructures,” Thin Solid Films 570, 504–509 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a1): Tilted SEM image of Ag NPs on a GaN template for growing sample GaN/NN-A. (a2) and (a3): SEM images of GaZnO NNs of sample GaN/NN-A with different magnifications. (b1)-(b3) [(c1)-(c3)]: SEM images similar to parts (a1)-(a3), respectively, for sample GaN/NN-B (GaN/NN-C).
Fig. 2
Fig. 2 (a1)-(a3) [(b1)-(b3)]: SEM images similar to Figs. 1(c1)-(c3), respectively, for sample GaN/NN-D (Si/NN).
Fig. 3
Fig. 3 Spectral variations of transmittance of samples GaN, GaN/GZO, GaN/NN-A, GaN/NN-B, GaN/NN-C, and GaN/NN-D.
Fig. 4
Fig. 4 Spectral variations of reflectance of samples GaN, GaN/GZO, GaN/NN-A, GaN/NN-B, GaN/NN-C, and GaN/NN-D.
Fig. 5
Fig. 5 Spectral variations of the power percentage collected over the transmission half-space of samples GaN, GaN/GZO, GaN/NN-A, GaN/NN-B, GaN/NN-C, and GaN/NN-D.
Fig. 6
Fig. 6 Spectral variations of the power percentage collected over the incidence half-space of samples GaN, GaN/GZO, GaN/NN-A, GaN/NN-B, GaN/NN-C, and GaN/NN-D.
Fig. 7
Fig. 7 Spectral variations of absorbance of samples GaN, GaN/GZO, GaN/NN-A, GaN/NN-B, GaN/NN-C, and GaN/NN-D.
Fig. 8
Fig. 8 Spectral variations of transmittance (T) and reflectance (R) of samples Si, Si/NP/GZO, Si/GZO, and Si/NN.
Fig. 9
Fig. 9 Spectral variations of the power percentages collected over the incidence (R) and transmission (T) half-spaces of samples Si, Si/NP/GZO, Si/GZO, and Si/NN.
Fig. 10
Fig. 10 Spectral variations of absorbance of samples Si, Si/NP/GZO, Si/GZO, and Si/NN.
Fig. 11
Fig. 11 (a): Cross-sectional TEM image of an NP body on a GaN template. The pink dotted line plots the boundary between Ag and GaN. (b1), (b2), (c1)-(c4), (d1)-(d4), and (e): SAED patterns together with the dashed-line indicators of the Ag (111), ZnO (002), and GaN (002) orientations in the circled regions of part (a).
Fig. 12
Fig. 12 (a): TEM image duplicated from Fig. 11(a) with three vertical green arrows drawn for EDX line scans. (b)-(d): Line-scan EDX signal profiles of Ga, Zn, and Ag along arrows 1-3, respectively, shown in part (a).
Fig. 13
Fig. 13 (a): Cross-sectional TEM image of the GaZnO NNs on GaN in a sample similar to sample GaN/NN-C, but the growth duration is only 10 min. (b): TEM image of a single NN. (c) and (d): Magnified TEM images in the circled top and bottom portions, respectively, of the NN in part (b). (c1), (c2), and (d1)-(d3): SAED patterns of the designated areas and the corresponding Ag (111), ZnO (002), and GaN (002) orientations.
Fig. 14
Fig. 14 (a): Cross-sectional TEM image of the GaZnO NNs on GaN in a sample similar to sample GaN/NN-A, but the growth duration is only 10 min. (b): Magnified TEM image of the circled bottom portion of the two NNs. (c1)-(c3), (d1), (d2), and (e): SAED patterns of the designated areas and the corresponding Ag (111), ZnO (002), and GaN (002) orientations.
Fig. 15
Fig. 15 (a): Cross-sectional TEM image of the GaZnO NNs on Si in sample Si/NN. (b): Magnified TEM image around the bottom of the circled NN in part (a). (c)-(e): SAED patterns together with the individual orientation indications of ZnO (002), Ag (111), and Si (400), respectively, in the circled regions.

Metrics