Abstract

We report on the influence of temperature on the polarization behavior of highly oriented ZnO thin film. First, the investigation of crystal structure change is studied, providing supporting information on the macroscopic-scale polarization of the ZnO thin film. Here, the lattice distortion is investigated by using X-ray diffraction. Furthermore, the role of temperature on the polarization behavior of the ZnO thin film is comprehensively studied by using temperature dependent spectroscopic ellipsometry. Here, the temperature dependent dielectric function analysis and electronic excitation models are used to understand the mechanism of polarization. We found an interesting temperature dependence of electronic transition, where the red-shift absorption and exciton-phonon interaction are observed on the system. This interaction is responsible for the increase of polarization response, which is confirmed by dielectric susceptibility spectra. These results provide important understanding for the control of the polarization dependence on the working temperature of ZnO thin film, which is the essential key in the fabrication of switchable optical devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic ellipsometry as an optical probe of strain evolution in ferroelectric thin films

D. Y. Lei, S. Kéna-Cohen, B. Zou, P. K. Petrov, Y. Sonnefraud, J. Breeze, S. A. Maier, and N. M. Alford
Opt. Express 20(4) 4419-4427 (2012)

Circular dichroism, surface-enhanced Raman scattering, and spectroscopic ellipsometry studies of chiral polyfluorene-phenylene films

Geon Joon Lee, Eun Ha Choi, Won Kyu Ham, Chang Kwon Hwangbo, Min Ju Cho, and Dong Hoon Choi
Opt. Mater. Express 6(3) 767-781 (2016)

Strain-induced non-linear optical characteristics of pyroelectric PbVO3 epitaxial thin films

Seol Hee Oh, Hae-Young Shin, Seokhyun Yoon, Jai Seok Ahn, Janghwan Cha, Suklyun Hong, Sung Jin Kang, Miyoung Kim, Sukgeun Choi, Changjae Roh, Jongseok Lee, and William Jo
Opt. Mater. Express 7(1) 62-72 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. C. Feng, Handbook of Zinc Oxide and Related Materials: Volume One, Materials (Taylor & Francis, 2012)
  2. P. Paufler, International Tables for Crystallography T. Hahn ed. (Kluwer Academic, 1996)
  3. R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).
  4. R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).
  5. C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer, 2010)
  6. P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
    [PubMed]
  7. Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).
  8. R. Marlina, A. Rusydi, and Y. Darma, “Optical Properties and Interband Transitions of ZnO and Cu-Doped ZnO Films Revealed by Spectroscopic Ellipsometry Measurement,” Adv. Mat. Res. 1112, 124–127 (2015).
  9. Y. Darma and A. Rusydi, “Optical Band Transitions and Excitonic States in ZnO: Cu Films,” Adv. Mat. Res. 1112, 3–6 (2015).
  10. R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).
  11. Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).
  12. L. Museur, J.-P. Michel, P. Portes, A. Englezis, A. Stassinopoulos, D. Anglos, and A. V. Kanaev, “Femtosecond UV laser non-ablative surface structuring of ZnO crystal: impact on exciton photoluminescence,” J. Opt. Soc. Am. B 27(3), 531–535 (2010).
  13. S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, “ZnO based visible–blind UV photodetector by spray pyrolysis,” Superlattices Microstruct. 76, 253–263 (2014).
  14. C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
    [PubMed]
  15. Y. Ka, H.-R. Jang, and W.-S. Choi, “Quantum Dot LEDs Based on Solution-Processed Zinc Oxide Nano Particles as Electron Transport Layer,” Sci. Adv. Mater. 8(2), 382–387 (2016).
  16. Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).
  17. C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).
  18. H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, “A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure,” Nano Lett. 8(6), 1750–1755 (2008).
    [PubMed]
  19. Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
    [PubMed]
  20. Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).
  21. Y. Darma, C. D. Satrya, R. Marlina, R. Kurniawan, T. S. Herng, J. Ding, and A. Rusydi, “Plasmon–exciton interaction and screening of exciton in ZnO-based thin film on bulk Pt as analyzed by spectroscopic ellipsometry,” Japan. J. Appl. Phys. 56(1S), 01AD6 (2017)
  22. P. Scherrer, “Estimation of the size and internal structure of colloidal particles by means of röntgen,” Nachr. Ges. Wiss. Göttingen 2, 96–100 (1918).
  23. A. Kuzmenko, “Kramers–Kronig constrained variational analysis of optical spectra,” Rev. Sci. Instrum. 76(8), 083108 (2005).
  24. I. Hwang, S. Beaupre, M. Leclerc, and G. D. Scholes, “Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers,” Chem. Sci. (Camb.) 3(7), 2270–2277 (2012).
  25. T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
    [PubMed]
  26. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
  27. J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
    [PubMed]
  28. T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).
  29. A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

2017 (1)

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

2016 (5)

Y. Ka, H.-R. Jang, and W.-S. Choi, “Quantum Dot LEDs Based on Solution-Processed Zinc Oxide Nano Particles as Electron Transport Layer,” Sci. Adv. Mater. 8(2), 382–387 (2016).

Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
[PubMed]

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).

2015 (3)

R. Marlina, A. Rusydi, and Y. Darma, “Optical Properties and Interband Transitions of ZnO and Cu-Doped ZnO Films Revealed by Spectroscopic Ellipsometry Measurement,” Adv. Mat. Res. 1112, 124–127 (2015).

Y. Darma and A. Rusydi, “Optical Band Transitions and Excitonic States in ZnO: Cu Films,” Adv. Mat. Res. 1112, 3–6 (2015).

R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).

2014 (6)

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, “ZnO based visible–blind UV photodetector by spray pyrolysis,” Superlattices Microstruct. 76, 253–263 (2014).

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).

2012 (2)

I. Hwang, S. Beaupre, M. Leclerc, and G. D. Scholes, “Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers,” Chem. Sci. (Camb.) 3(7), 2270–2277 (2012).

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

2010 (1)

2008 (1)

H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, “A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure,” Nano Lett. 8(6), 1750–1755 (2008).
[PubMed]

2007 (1)

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

2005 (1)

A. Kuzmenko, “Kramers–Kronig constrained variational analysis of optical spectra,” Rev. Sci. Instrum. 76(8), 083108 (2005).

1995 (1)

J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
[PubMed]

1987 (1)

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[PubMed]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

1918 (1)

P. Scherrer, “Estimation of the size and internal structure of colloidal particles by means of röntgen,” Nachr. Ges. Wiss. Göttingen 2, 96–100 (1918).

Al-habashi, R. M.

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

Alouani, M.

J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
[PubMed]

Anglos, D.

Asmara, T. C.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Beaupre, S.

I. Hwang, S. Beaupre, M. Leclerc, and G. D. Scholes, “Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers,” Chem. Sci. (Camb.) 3(7), 2270–2277 (2012).

Boultadakis, S.

J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
[PubMed]

Breese, M. H.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Briddon, P. R.

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

Cardona, M.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[PubMed]

Choi, W.-S.

Y. Ka, H.-R. Jang, and W.-S. Choi, “Quantum Dot LEDs Based on Solution-Processed Zinc Oxide Nano Particles as Electron Transport Layer,” Sci. Adv. Mater. 8(2), 382–387 (2016).

Darma, Y.

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).

R. Marlina, A. Rusydi, and Y. Darma, “Optical Properties and Interband Transitions of ZnO and Cu-Doped ZnO Films Revealed by Spectroscopic Ellipsometry Measurement,” Adv. Mat. Res. 1112, 124–127 (2015).

Y. Darma and A. Rusydi, “Optical Band Transitions and Excitonic States in ZnO: Cu Films,” Adv. Mat. Res. 1112, 3–6 (2015).

R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

Ding, J.

Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Du, J.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
[PubMed]

Englezis, A.

Etmimi, K. M.

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

Fauziah, R.

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

Feng, Y. P.

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Ganbavle, V. V.

S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, “ZnO based visible–blind UV photodetector by spray pyrolysis,” Superlattices Microstruct. 76, 253–263 (2014).

Gao, S.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Garriga, M.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[PubMed]

Goss, J. P.

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

Gsiea, A. M.

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

Han, C.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

He, J.

H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, “A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure,” Nano Lett. 8(6), 1750–1755 (2008).
[PubMed]

Herng, T. S.

Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Hou, J.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Hwang, I.

I. Hwang, S. Beaupre, M. Leclerc, and G. D. Scholes, “Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers,” Chem. Sci. (Camb.) 3(7), 2270–2277 (2012).

Inamdar, S. I.

S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, “ZnO based visible–blind UV photodetector by spray pyrolysis,” Superlattices Microstruct. 76, 253–263 (2014).

Jang, H.-R.

Y. Ka, H.-R. Jang, and W.-S. Choi, “Quantum Dot LEDs Based on Solution-Processed Zinc Oxide Nano Particles as Electron Transport Layer,” Sci. Adv. Mater. 8(2), 382–387 (2016).

Jeong, T. S.

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Jiang, D.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Ka, Y.

Y. Ka, H.-R. Jang, and W.-S. Choi, “Quantum Dot LEDs Based on Solution-Processed Zinc Oxide Nano Particles as Electron Transport Layer,” Sci. Adv. Mater. 8(2), 382–387 (2016).

Kanaev, A. V.

Kim, B. J.

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Kotlov, A.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Krenner, H. J.

H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, “A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure,” Nano Lett. 8(6), 1750–1755 (2008).
[PubMed]

Kumar, A.

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Kurniawan, R.

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).

Kuzmenko, A.

A. Kuzmenko, “Kramers–Kronig constrained variational analysis of optical spectra,” Rev. Sci. Instrum. 76(8), 083108 (2005).

Lautenschlager, P.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[PubMed]

Leclerc, M.

I. Hwang, S. Beaupre, M. Leclerc, and G. D. Scholes, “Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers,” Chem. Sci. (Camb.) 3(7), 2270–2277 (2012).

Lee, T. S.

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Li, B.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Li, C.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

Liang, Q.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Liao, Q.

Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).

Lin, J.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Logothetidis, S.

J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
[PubMed]

Lu, Y. H.

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Lubguban, J. A.

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Marghani, K. A. S.

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

Marlina, R.

Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).

R. Marlina, A. Rusydi, and Y. Darma, “Optical Properties and Interband Transitions of ZnO and Cu-Doped ZnO Films Revealed by Spectroscopic Ellipsometry Measurement,” Adv. Mat. Res. 1112, 124–127 (2015).

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

Michel, J.-P.

Motapothula, M.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Muhammady, S.

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

Museur, L.

Nurfani, E.

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

Ong, C. S.

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Petalas, J.

J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
[PubMed]

Petroff, P. M.

H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, “A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure,” Nano Lett. 8(6), 1750–1755 (2008).
[PubMed]

Portes, P.

Pryor, C. E.

H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, “A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure,” Nano Lett. 8(6), 1750–1755 (2008).
[PubMed]

Qi, D.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Qin, J.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Rajpure, K. Y.

S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, “ZnO based visible–blind UV photodetector by spray pyrolysis,” Superlattices Microstruct. 76, 253–263 (2014).

Rübhausen, M.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Rusydi, A.

Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

R. Marlina, A. Rusydi, and Y. Darma, “Optical Properties and Interband Transitions of ZnO and Cu-Doped ZnO Films Revealed by Spectroscopic Ellipsometry Measurement,” Adv. Mat. Res. 1112, 124–127 (2015).

Y. Darma and A. Rusydi, “Optical Band Transitions and Excitonic States in ZnO: Cu Films,” Adv. Mat. Res. 1112, 3–6 (2015).

R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Ryu, Y. R.

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Santoso, I.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Scherrer, P.

P. Scherrer, “Estimation of the size and internal structure of colloidal particles by means of röntgen,” Nachr. Ges. Wiss. Göttingen 2, 96–100 (1918).

Scholes, G. D.

I. Hwang, S. Beaupre, M. Leclerc, and G. D. Scholes, “Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers,” Chem. Sci. (Camb.) 3(7), 2270–2277 (2012).

Shirakawa, T.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Stassinopoulos, A.

Sutjahja, I. M.

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).

Tang, X.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
[PubMed]

Tian, C.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

Venkatesan, T.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Vina, L.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[PubMed]

Wang, M.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
[PubMed]

Wang, X.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).

White, H. W.

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Wills, J. M.

J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
[PubMed]

Winata, T.

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).

Youn, C. J.

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Yu, Y.

Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).

Yuan, W.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Yunoki, S.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Zang, Z.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
[PubMed]

Zeng, K. Y.

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Zeng, X.

Zhang, Q.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

Zhang, Y.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).

Zhang, Z.

Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).

Zhao, J.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Zhao, Y.

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

ACS Appl. Mater. Interfaces (1)

C. Tian, D. Jiang, B. Li, J. Lin, Y. Zhao, W. Yuan, J. Zhao, Q. Liang, S. Gao, J. Hou, and J. Qin, “Performance Enhancement of ZnO UV Photodetectors by Surface Plasmons,” ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014).
[PubMed]

Adv. Mat. Res. (2)

R. Marlina, A. Rusydi, and Y. Darma, “Optical Properties and Interband Transitions of ZnO and Cu-Doped ZnO Films Revealed by Spectroscopic Ellipsometry Measurement,” Adv. Mat. Res. 1112, 124–127 (2015).

Y. Darma and A. Rusydi, “Optical Band Transitions and Excitonic States in ZnO: Cu Films,” Adv. Mat. Res. 1112, 3–6 (2015).

AIP Conf. Proc. (2)

R. Kurniawan, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate,” AIP Conf. Proc. 1677, 070002 (2015).

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, A. Rusydi, and Y. Darma, “Polarity enhancement in high oriented ZnO films on Si (100) substrate,” AIP Conf. Proc. 1725(1), 020035 (2016).

Appl. Phys. Lett. (2)

Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Appl. Phys. Lett. 90(13), 131115 (2007).

Y. Darma, T. S. Herng, R. Marlina, R. Fauziah, J. Ding, and A. Rusydi, “Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO: Cu films,” Appl. Phys. Lett. 104(8), 081922 (2014).

Chem. Sci. (Camb.) (1)

I. Hwang, S. Beaupre, M. Leclerc, and G. D. Scholes, “Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers,” Chem. Sci. (Camb.) 3(7), 2270–2277 (2012).

IEEE Photonics J. (1)

Y. Darma, R. Marlina, T. S. Herng, J. Ding, and A. Rusydi, “Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films,” IEEE Photonics J. 8(3), 1–9 (2016).

Int. J. Math. Comput. Phys. Elec. Comput. Eng. (1)

A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, and K. A. S. Marghani, “Native point defects in ZnO,” Int. J. Math. Comput. Phys. Elec. Comput. Eng. 8(1), 127–132 (2014).

J. Appl. Phys. (1)

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa, D. Qi, A. Kotlov, M. Motapothula, M. H. Breese, T. Venkatesan, S. Yunoki, and M. Rübhausen, Ariando, andA. Rusydi, “Large spectral weight transfer in optical conductivity of SrTiO3 induced by intrinsic vacancies,” J. Appl. Phys. 115(21), 213706 (2014).

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

R. Kurniawan, E. Nurfani, S. Muhammady, I. M. Sutjahja, T. Winata, and Y. Darma, “Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering,” J. Phys. Conf. Ser. 776(1), 012043 (2016).

Nachr. Ges. Wiss. Göttingen (1)

P. Scherrer, “Estimation of the size and internal structure of colloidal particles by means of röntgen,” Nachr. Ges. Wiss. Göttingen 2, 96–100 (1918).

Nano Energy (1)

Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering,” Nano Energy 9, 237–244 (2014).

Nano Lett. (1)

H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, “A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure,” Nano Lett. 8(6), 1750–1755 (2008).
[PubMed]

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (2)

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[PubMed]

J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, and J. M. Wills, “Optical and electronic-structure study of cubic and hexagonal GaN thin films,” Phys. Rev. B Condens. Matter 52(11), 8082–8091 (1995).
[PubMed]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

Rev. Sci. Instrum. (1)

A. Kuzmenko, “Kramers–Kronig constrained variational analysis of optical spectra,” Rev. Sci. Instrum. 76(8), 083108 (2005).

Sci. Adv. Mater. (1)

Y. Ka, H.-R. Jang, and W.-S. Choi, “Quantum Dot LEDs Based on Solution-Processed Zinc Oxide Nano Particles as Electron Transport Layer,” Sci. Adv. Mater. 8(2), 382–387 (2016).

Sci. Rep. (1)

T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Sci. Rep. 2, 587 (2012).
[PubMed]

Sol. Energy Mater. Sol. Cells (1)

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172(Supplement C), 341–346 (2017).

Superlattices Microstruct. (1)

S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, “ZnO based visible–blind UV photodetector by spray pyrolysis,” Superlattices Microstruct. 76, 253–263 (2014).

Other (4)

C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer, 2010)

Z. C. Feng, Handbook of Zinc Oxide and Related Materials: Volume One, Materials (Taylor & Francis, 2012)

P. Paufler, International Tables for Crystallography T. Hahn ed. (Kluwer Academic, 1996)

Y. Darma, C. D. Satrya, R. Marlina, R. Kurniawan, T. S. Herng, J. Ding, and A. Rusydi, “Plasmon–exciton interaction and screening of exciton in ZnO-based thin film on bulk Pt as analyzed by spectroscopic ellipsometry,” Japan. J. Appl. Phys. 56(1S), 01AD6 (2017)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 XRD pattern of the ZnO thin film on a quartz substrate.
Fig. 2
Fig. 2 Real part and imaginary parts of the dielectric function (a) and temperature- and frequency-dependent susceptibility of the ZnO thin film (b). The inset shows the difference polarization response induced by the presence of defects in the ZnO thin film, as presented in PL characterization.
Fig. 3
Fig. 3 Second derivative spectra of the real part of the dielectric function, with Eexc and EVB-CB represent the exciton critical point and the valence to the conduction band critical point (a) and exciton state of the ZnO thin film as a function of temperature (b).
Fig. 4
Fig. 4 Absorption (a) and the spectral weight W (b) of the ZnO thin film.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε 1 = n 2 k 2 =1+Reχ(ω)
ε 2 =2nk=Imχ(ω)
χ(ω)=Reχ(ω)+iImχ(ω)=χ'(ω)+iχ"(ω)
χ(ω)=[ ε 1 (ω)1]i ε 2 (ω)
[ ε 1 (ω)1]= ε 1 '(ω)
χ(ω)= ε 1 '(ω)i ε 2 (ω)
E(T)=E(0) A T 2 T+B
E(T)= E b a B ( 1+ 2 e θ/T 1 )

Metrics