Abstract

By using carbon ion implantation and rotating blade dicing, ridge waveguides have been produced in periodically poled MgO doped congruent LiNbO3 crystal. The guiding properties at wavelength of near-infrared waveband have been investigated. The quasi-phase-matched second harmonic generation in the ridge waveguides has been characterized. The depth profile of the d33 nonlinear coefficient in the implanted region has been evaluated by the reflected second-harmonic generation from angle-lapped samples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals

Lei Wang, Christian E. Haunhorst, Martin F. Volk, Feng Chen, and Detlef Kip
Opt. Express 23(23) 30188-30194 (2015)

Fabrication of low-loss Rb-exchanged ridge waveguides in z-cut KTiOPO4

Martin F. Volk, Christian E. Rüter, Matteo Santandrea, Christof Eigner, Laura Padberg, Harald Herrmann, Christine Silberhorn, and Detlef Kip
Opt. Mater. Express 8(1) 82-87 (2018)

Second harmonic generation of diamond-blade diced KTiOPO4 ridge waveguides

Chen Chen, Christian E. Rüter, Martin F. Volk, Cheng Chen, Zhen Shang, Qingming Lu, Shavkat Akhmadaliev, Shengqiang Zhou, Feng Chen, and Detlef Kip
Opt. Express 24(15) 16434-16439 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 11 (2009).
  2. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
  3. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
  4. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
  5. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [PubMed]
  6. P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, and K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3,” Appl. Phys., A Mater. Sci. Process. 112(3), 615–622 (2013).
  7. L. Wang, J. H. Zhao, and G. Fu, “Ridged LiNbO3 waveguide fabricated by a novel wet etching/MeV oxygen ion implantation method,” J. Lightwave Technol. 28(9), 1344–1348 (2010).
  8. R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
    [PubMed]
  9. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [PubMed]
  10. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
    [PubMed]
  11. R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).
  12. T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
    [PubMed]
  13. G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20(7), 075018 (2010).
  14. G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
  15. H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
  16. V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).
  17. N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M. P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23(11), 13983–13990 (2015).
    [PubMed]
  18. N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
  19. J. Sun, Y. Gan, and C. Xu, “Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide,” Opt. Lett. 36(4), 549–551 (2011).
    [PubMed]
  20. J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett. 37(11), 2028–2030 (2012).
    [PubMed]
  21. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
    [PubMed]
  22. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
  23. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
  24. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
    [PubMed]
  25. L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals,” Opt. Express 23(23), 30188–30194 (2015).
    [PubMed]
  26. L. Ai, L. Wang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient second harmonic generation of diced ridge waveguides based on carbon ion irradiated periodically poled LiNbO3,” J. Lightwave Technol. 35(12), 2476–2480 (2017).
  27. Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).
  28. Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
    [PubMed]
  29. Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
    [PubMed]
  30. J. F. Ziegler, J. P. Biersack, and U. Littmark, “Stopping and Range of Ions in Matter,” http://srim.org/ , (2008).
  31. R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
  32. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47(35), 6625–6630 (2008).
    [PubMed]
  33. Rsoft Design Group, Computer software BeamProp. [online]. Available: http://www.rsoftdesign.com/ , (1994).
  34. M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
  35. D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67(6), 748–750 (1995).

2017 (1)

2016 (3)

2015 (4)

2014 (1)

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

2013 (1)

P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, and K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3,” Appl. Phys., A Mater. Sci. Process. 112(3), 615–622 (2013).

2012 (2)

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett. 37(11), 2028–2030 (2012).
[PubMed]

2011 (4)

J. Sun, Y. Gan, and C. Xu, “Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide,” Opt. Lett. 36(4), 549–551 (2011).
[PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[PubMed]

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

2010 (4)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20(7), 075018 (2010).

L. Wang, J. H. Zhao, and G. Fu, “Ridged LiNbO3 waveguide fabricated by a novel wet etching/MeV oxygen ion implantation method,” J. Lightwave Technol. 28(9), 1344–1348 (2010).

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[PubMed]

2009 (3)

2008 (2)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47(35), 6625–6630 (2008).
[PubMed]

2007 (1)

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).

2006 (1)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).

2004 (1)

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).

2003 (1)

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

1997 (1)

1995 (1)

D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67(6), 748–750 (1995).

1993 (1)

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

Ai, L.

Akhmadaliev, S.

Asobe, M.

Balevicius, Z.

Baleviciute, I.

Bang, O.

Benchabane, S.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

Bernal, M. P.

Bettiol, A. A.

Bortz, M. L.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Chen, F.

Courjal, N.

N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M. P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23(11), 13983–13990 (2015).
[PubMed]

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

Devaux, F.

Diziain, S.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Dobrusin, V.

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).

Dong, N.

Eyres, L. A.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).

Fejer, M. M.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).

Fluck, D.

D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67(6), 748–750 (1995).

Fu, G.

Gan, Y.

Gao, T.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20(7), 075018 (2010).

Geiss, R.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Gerthoffer, A.

Grange, R.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

Grosjean, T.

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Guichardaz, B.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).

Günter, P.

D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67(6), 748–750 (1995).

Guyot, C.

Hänsch, T. W.

Hansen, O.

Hartung, H.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

Haunhorst, C. E.

Häyrinen, M.

Henrot, F.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Hong, F. L.

Hu, H.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[PubMed]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Huang, Q.

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

Imaeda, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

Ito, R.

Iwai, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).

Khorasaninejad, M.

Kip, D.

Kitamoto, A.

Kley, E. B.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Kondo, T.

Kovalevich, T.

Kuittinen, M.

Küpfer, M.

D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67(6), 748–750 (1995).

Kurimura, S.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).

Liu, P.

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

Liu, T.

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

Lu, H. H.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Nakajima, H.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).

Ndao, A.

Nelson, K. A.

P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, and K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3,” Appl. Phys., A Mater. Sci. Process. 112(3), 615–622 (2013).

Nishida, Y.

Nishikawa, T.

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Ofori-Okai, B. K.

P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, and K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3,” Appl. Phys., A Mater. Sci. Process. 112(3), 615–622 (2013).

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Ozawa, A.

Pavel, N.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

Pertsch, T.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Pliska, T.

D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67(6), 748–750 (1995).

Queste, S.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Rabiei, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).

Ramanavicius, A.

Rauch, J. Y.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[PubMed]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Roussey, M.

Ruschin, S.

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).

Rüter, C. E.

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

Saini, S. S.

Saravi, S.

Schrempel, F.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Sergeyev, A.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

Setzpfandt, F.

Shang, Z.

Shirane, M.

Shoji, I.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).

Shpisman, L.

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).

Sivarajah, P.

P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, and K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3,” Appl. Phys., A Mater. Sci. Process. 112(3), 615–622 (2013).

Sohler, W.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[PubMed]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

Solntsev, A. S.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

Steinert, M.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Suarez, M.

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Sukhorukov, A. A.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

Sun, G.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20(7), 075018 (2010).

Sun, J.

Suntsov, S.

Taebi, S.

Taira, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

Tan, Y.

Tumenas, S.

Tünnermann, A.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Ulliac, G.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).

Vanga, S. K.

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Volk, M. F.

Wang, F.

Wang, L.

Wang, X. L.

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

Werley, C. A.

P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, and K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3,” Appl. Phys., A Mater. Sci. Process. 112(3), 615–622 (2013).

Xu, C.

Yamaguchi, S.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

Yao, Y.

Yoshino, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

Yuan, W.

Zhang, H.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20(7), 075018 (2010).

Zhang, L.

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

Zhao, J. H.

Zhao, X.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20(7), 075018 (2010).

Zhou, S.

Zhou, Y. F.

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

Appl. Opt. (1)

Appl. Phys. B (2)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

Appl. Phys. Lett. (5)

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).

D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67(6), 748–750 (1995).

Appl. Phys., A Mater. Sci. Process. (1)

P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, and K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3,” Appl. Phys., A Mater. Sci. Process. 112(3), 615–622 (2013).

J. Appl. Phys. (1)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 11 (2009).

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20(7), 075018 (2010).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).

Microelectron. Eng. (1)

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).

Nanotechnology (1)

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[PubMed]

Opt. Express (8)

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[PubMed]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[PubMed]

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[PubMed]

N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M. P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23(11), 13983–13990 (2015).
[PubMed]

Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
[PubMed]

L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals,” Opt. Express 23(23), 30188–30194 (2015).
[PubMed]

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
[PubMed]

Opt. Lett. (4)

Opt. Mater. (1)

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).

Opt. Photonics News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).

Phys. Status Solidi Rapid Res. Lett. (1)

Q. Huang, P. Liu, T. Liu, L. Zhang, Y. F. Zhou, and X. L. Wang, “Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation,” Phys. Status Solidi Rapid Res. Lett. 6(5), 205–207 (2012).

Phys. Status Solidi., A Appl. Mater. Sci. (1)

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi., A Appl. Mater. Sci. 211(10), 2421–2425 (2014).

Other (2)

J. F. Ziegler, J. P. Biersack, and U. Littmark, “Stopping and Range of Ions in Matter,” http://srim.org/ , (2008).

Rsoft Design Group, Computer software BeamProp. [online]. Available: http://www.rsoftdesign.com/ , (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Fabrication process of the ridge waveguides and the optical characterizations. (a) Carbon ion implantation, (b) optical grade dicing, (c) end-face coupling setup and (d) geometry and orientation of the wedged x-cut LiNbO3 samples used for surface reflected SHG measurements.
Fig. 2
Fig. 2 (a) Fabry-Pérot interference fringes measured in 9.8 μm-wide ridge waveguide and (b) transmitted light power of 6.9 μm-wide ridge as a function of wavelength.
Fig. 3
Fig. 3 (a) Experimental SHG tuning curve. The insets are the SHG mode pattern of 9.8 μm-wide ridge waveguide and the measured SHG power vs. pump power; (b) phase matching wavelength versus the ridge width.
Fig. 4
Fig. 4 (a) Reflected 266 nm SH intensity which is normalized to that from bulk LiNbO3 versus the depth into the 4/7.5 MeV carbon ion implanted XLN waveguide before (blue line with circle symbol) and after the thermal annealing (red line with diamond symbol). The SRIM simulated nuclear energy depositions were also depicted in the figure (dotted lines); (b) refractive index profile of planar waveguide at 1615 nm; calculated mode profiles of (c) pump light (1615 nm) and (d) SHG light (807.5 nm) of 9.8 μm-wide ridge waveguide.
Fig. 5
Fig. 5 Calculated normalized conversion efficiencies of different ridges with (red line) or without (blue line) the consideration of the d33 profile mentioned in Fig. 4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = 8 π ( d Q P M 2 ) C ε 0 n ω 2 n 2 ω λ ω 2 | d ¯ 33 i m p l a n t e d ( x , y ) E ω 2 ( x , y ) E 2 ω ( x , y ) d x d y | 2

Metrics