Abstract

In this work, thin Ti nanocones are deposited on top of the arrays of ZnO nanopagodas, and the whole structure works as an efficient nanostructured metamaterial perfect absorber (MPA) without using lithography and dry etching. In this design, ~1µm long ZnO nanopagoda arrays are grown on a 100 nm ZnO buffer layer over the silicon/glass substrate by a treatment with an aqueous solution of L-ascorbic acid. Growth direction and the degree of lamination in the ZnO nanostructures can be easily controlled by adjusting the concentration of L-ascorbic acid. Afterward, these ZnO nanopagodas are coated with a 30nm thin top and a 500nm thick bottom layer of Ti to achieve the proposed nanocone resonant cavity structure with electromagnetic wave field penetration. The overall structure encapsulates three physical concepts, namely, field penetration, adiabatic coupling and cavity resonance, which contribute the broadband perfect absorption. The entire process is carried out at a low temperature (<90°). We believe the proposed tapered Ti nanocones MPA structure facilitates ultra-broadband perfect spectral absorption with promising nature of low-cost, large-area, and lithography-free.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation

Yan Kai Zhong, Yi-Chun Lai, Ming-Hsiang Tu, Bo-Ruei Chen, Sze Ming Fu, Peichen Yu, and Albert Lin
Opt. Express 24(10) A832-A845 (2016)

Polarization-selective ultra-broadband super absorber

Yan Kai Zhong, Sze Ming Fu, Weiming Huang, Ding Rung, Jian Yi-Wen Huang, Parag Parashar, and Albert Lin
Opt. Express 25(4) A124-A133 (2017)

Super-wideband perfect solar light absorbers using titanium and silicon dioxide thin-film cascade optical nanocavities

Jinnan Chen, Junpeng Guo, and Liang-Yao Chen
Opt. Mater. Express 6(12) 3804-3813 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  2. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  4. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
    [Crossref] [PubMed]
  5. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  6. W. H. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
    [Crossref]
  7. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
    [Crossref]
  8. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
    [Crossref]
  9. K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
    [Crossref]
  10. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
    [Crossref] [PubMed]
  11. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  12. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
    [Crossref]
  13. Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
    [Crossref]
  14. Y. K. Zhong, S. M. Fu, N. P. Ju, M. Tu, B. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photonics J. 8(1), 2200109 (2016).
    [Crossref]
  15. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  16. Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
    [Crossref] [PubMed]
  17. G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
    [Crossref] [PubMed]
  18. C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
    [Crossref]
  19. L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
    [Crossref] [PubMed]
  20. W.-C. Y. Y.-C. Chang, C.-M. Chang, P.-C. Hsu, and L.-J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9(7), 3161–3167 (2009).
    [Crossref]
  21. Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
    [Crossref]
  22. Y.-C. Chang, “Temperature-dependence cathodoluminescence of ultra-sharp ZnO nanopagoda arrays,” J. Alloys Compd. 617, 16–20 (2014).
    [Crossref]
  23. H.-M. Chiu and J.-M. Wu, “Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5524 (2013).
    [Crossref]
  24. D. Panda and T.-Y. Tseng, “One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications,” J. Mater. Sci. 48(20), 6849–6877 (2013).
    [Crossref]
  25. G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
    [Crossref]
  26. Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).
  27. Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24(10), A832–A845 (2016).
    [Crossref] [PubMed]

2016 (4)

Y. K. Zhong, S. M. Fu, N. P. Ju, M. Tu, B. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photonics J. 8(1), 2200109 (2016).
[Crossref]

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24(10), A832–A845 (2016).
[Crossref] [PubMed]

2015 (1)

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

2014 (4)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Y.-C. Chang, “Temperature-dependence cathodoluminescence of ultra-sharp ZnO nanopagoda arrays,” J. Alloys Compd. 617, 16–20 (2014).
[Crossref]

2013 (4)

H.-M. Chiu and J.-M. Wu, “Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5524 (2013).
[Crossref]

D. Panda and T.-Y. Tseng, “One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications,” J. Mater. Sci. 48(20), 6849–6877 (2013).
[Crossref]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

2011 (4)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (2)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (2)

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

W.-C. Y. Y.-C. Chang, C.-M. Chang, P.-C. Hsu, and L.-J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9(7), 3161–3167 (2009).
[Crossref]

2007 (1)

G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
[Crossref]

1973 (1)

W. H. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

Alu, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Bogart, G. R.

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Brener, I.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

Chanda, D.

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Chang, C.-M.

W.-C. Y. Y.-C. Chang, C.-M. Chang, P.-C. Hsu, and L.-J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9(7), 3161–3167 (2009).
[Crossref]

Chang, W.-C. Y. Y.-C.

W.-C. Y. Y.-C. Chang, C.-M. Chang, P.-C. Hsu, and L.-J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9(7), 3161–3167 (2009).
[Crossref]

Chang, Y.-C.

Y.-C. Chang, “Temperature-dependence cathodoluminescence of ultra-sharp ZnO nanopagoda arrays,” J. Alloys Compd. 617, 16–20 (2014).
[Crossref]

Chen, B.

Y. K. Zhong, S. M. Fu, N. P. Ju, M. Tu, B. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photonics J. 8(1), 2200109 (2016).
[Crossref]

Chen, B.-R.

Chen, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Chen, L.-J.

W.-C. Y. Y.-C. Chang, C.-M. Chang, P.-C. Hsu, and L.-J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9(7), 3161–3167 (2009).
[Crossref]

Chen, R. T.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Chiu, H.-M.

H.-M. Chiu and J.-M. Wu, “Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5524 (2013).
[Crossref]

Chung, C.-J.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Emerson, W. H.

W. H. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Foteinopoulou, S.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

Fu, S. M.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Gao, L.

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Gao, W.

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Guo, L. J.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Hao, H.

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

He, H.

G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
[Crossref]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hollowell, A. E.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Hsu, P.-C.

W.-C. Y. Y.-C. Chang, C.-M. Chang, P.-C. Hsu, and L.-J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9(7), 3161–3167 (2009).
[Crossref]

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Huang, B.

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

Jaramillo, T. F.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ju, N. P.

Y. K. Zhong, S. M. Fu, N. P. Ju, M. Tu, B. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photonics J. 8(1), 2200109 (2016).
[Crossref]

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Lai, Y.-C.

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Li, J.

G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
[Crossref]

Li, Q.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Lin, A.

Lin, X.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Ling, T.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Liu, G.

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

Liu, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Ok, J. G.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Pan, Z.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Panda, D.

D. Panda and T.-Y. Tseng, “One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications,” J. Mater. Sci. 48(20), 6849–6877 (2013).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Progler, C. J.

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Rogers, J. A.

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Shigeta, K.

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Subbaraman, H.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Subramania, G.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

Tang, H.

G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Tseng, T.-Y.

D. Panda and T.-Y. Tseng, “One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications,” J. Mater. Sci. 48(20), 6849–6877 (2013).
[Crossref]

Tu, M.

Y. K. Zhong, S. M. Fu, N. P. Ju, M. Tu, B. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photonics J. 8(1), 2200109 (2016).
[Crossref]

Tu, M.-H.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vazquez-Guardado, A.

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Wang, G.

G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

Wang, Y.

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Wu, J.-M.

H.-M. Chiu and J.-M. Wu, “Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5524 (2013).
[Crossref]

Wu, Y.-K. R.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Xie, Y.-S.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Ye, Z.

G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
[Crossref]

Yu, P.

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Zhang, X.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Zhong, Y. K.

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

ACS Nano (1)

L. Gao, K. Shigeta, A. Vazquez-Guardado, C. J. Progler, G. R. Bogart, J. A. Rogers, and D. Chanda, “Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands,” ACS Nano 8(6), 5535–5542 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total Solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Appl. Phys. Lett. (1)

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Cryst. Growth Des. (1)

W.-C. Y. Y.-C. Chang, C.-M. Chang, P.-C. Hsu, and L.-J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9(7), 3161–3167 (2009).
[Crossref]

IEEE Photonics J. (1)

Y. K. Zhong, S. M. Fu, N. P. Ju, M. Tu, B. Chen, and A. Lin, “Fully planarized perfect metamaterial absorbers with no photonic nanostructures,” IEEE Photonics J. 8(1), 2200109 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

W. H. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

J. Alloys Compd. (1)

Y.-C. Chang, “Temperature-dependence cathodoluminescence of ultra-sharp ZnO nanopagoda arrays,” J. Alloys Compd. 617, 16–20 (2014).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

H.-M. Chiu and J.-M. Wu, “Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5524 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

J. Mater. Sci. (1)

D. Panda and T.-Y. Tseng, “One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications,” J. Mater. Sci. 48(20), 6849–6877 (2013).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

J. Phys. D Appl. Phys. (2)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

G. Wang, Z. Ye, H. He, H. Tang, and J. Li, “Growth and properties of ZnO/hexagonal ZnMgO/cubic ZnMgO nanopagoda heterostructures,” J. Phys. D Appl. Phys. 40(17), 5287–5290 (2007).
[Crossref]

Nano (1)

Y. Liu, G. Liu, Y. Wang, W. Gao, H. Hao, and B. Huang, “Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device,” Nano 11(02), 1650024 (2016).
[Crossref]

Nano Lett. (2)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2015).
[Crossref] [PubMed]

Other (1)

Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Two-dimensional (2D) and (b) three-dimensional (3D) cross-sectional views of our proposed MPA structure.

Fig. 2
Fig. 2

(a) Physical concepts involving field penetration, resonant cavity, and adiabatic coupling for the proposed design. (b) The gradient index variation is also shown along the vertical y direction. n is the refractive index, and y is the vertical space coordinate. The gradient index is the key to adiabatic coupling.

Fig. 3
Fig. 3

The spectral absorption of the lithography-free thin-Ti nanocone MPA at (a) normal incidence and (b) 60° oblique incidence. P = 1μm. tback_Ti = 500nm. A reduced glass substrate thickness tsub = 1μm is used in order to plot the entire structure field profile in Fig. 4. In Fig. 5 simulation data, the glass/Si substrates of tsub = 675μm is used in the calculation.

Fig. 4
Fig. 4

The field profiles for the time harmonic steady-state electric field amplitude x-component (Ex) and magnetic field y-component (Hy) at λ = 1μm. (a) Ex at the Y = 0 plane. (b)-(c) The field profiles on X-Y plane at Z = 1.9 μm for Ex and Hy respectively. ttop_Ti = 100nm, LZnO = 2μm, P = 1μm, tback_Ti = 500nm. A reduced glass substrate thickness tsub = 1μm is used in order to plot the entire structure field profile in Fig. 4. In Fig. 5 simulation data, the glass/Si substrates of tsub = 675μm is used in the calculation.

Fig. 5
Fig. 5

Experimental (Exp.) spectral response curves for reflectance (R), transmittance (T), and absorption (A) for the proposed Ti/ZnO nanopagoda MPAs. The simulation (sim.) data is plotted in dashed line for comparison. (a) ZnO pagoda on a glass substrate (b) ZnO pagoda on a Si substrate (c) ZnO pagoda on a glass substrate with ttop_Ti = 30nm top Ti thin layer (d) ZnO pagoda on Si substrate with ttop_Ti = 30nm top Ti thin layer. (e) ZnO pagoda on glass substrate with ttop_Ti = 30nm top Ti thin layer and 500nm bottom Ti layer. (f) ZnO pagoda on Si substrate with ttop_Ti = 30nm top Ti thin layer and 500nm bottom Ti layer. For (a)-(f), tsub = 675μm, LZnO ~1 μm, P = 0.3μm.

Fig. 6
Fig. 6

(a) The scanning electron microscope (SEM) data for the side view of ZnO nanopagodas with LZnO ~1 μm length and period (P)~0.3μm on Si substrate. The zoom-in view is also shown at the right. (b) The SEM top view of the ZnO nanopagoda arrays on a Si substrate and on a glass substrate. It can be seen the flat-top nature of the ZnO pagodas on a glass substrate that hampers adiabatic light in-coupling.

Fig. 7
Fig. 7

(a) The transmission electron microscope (TEM) image of the ZnO nanopagodas coated with Ti metal nanocones. ttop_Ti = 30nm. (b) The TEM image of top Ti nanocone thickness at three places (thick red lines) (c)-(d) STEM-EDS depth and sidewall coverage data for the ZnO nanopagodas coated with Ti metal nanocones, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(C H 2 ) 6 N 4 +6 H 2 O6HCHO+4N H 3
N H 3 + H 2 ON H 4 + +O H
4O H +Z n 2+ Zn (OH) 4 2
Zn (OH) 4 2 Zn O (s) + H 2 O+2O H

Metrics