Abstract

We investigated the optical properties of zinc germanium phosphide (ZnGeP2 or ZGP) crystals in a wide terahertz (THz) range from 0.2 THz to 6 THz, and made comparisons between crystals grown by both horizontal gradient freezing (HGF) and vertical gradient freezing (VGF) techniques. THz time-domain spectroscopy (TDS) and Fourier transform infrared spectroscopy (FTIR) systems were used to measure and analyze the transmittance, refractive indices and absorption coefficients. It was found that the HGF grown crystals have different birefringence and absorption in the THz range compared with the VGF grown crystals. The anisotropic absorption in the THz range was observed and the polar phonon modes at 3.6 THz and 4.26 THz were also discussed. The dispersion and absorption data of ZGP given in this report enabled us to know it better in the THz range and optimize its THz applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties and potential applications of ɛ-GaSe at terahertz frequencies

Ching-Wei Chen, Tsung-Ta Tang, Sung-Hui Lin, Jung Y. Huang, Chen-Shiung Chang, Pei-Kang Chung, Shun-Tung Yen, and Ci-Ling Pan
J. Opt. Soc. Am. B 26(9) A58-A65 (2009)

Optical properties and birefringence in LiInS2 in the terahertz frequency range

Shanpeng Wang, Qijun Liang, Xutang Tao, and Thomas Dekorsy
Opt. Mater. Express 4(4) 575-586 (2014)

Linear and nonlinear optical properties of ZnGeP2 crystal for infrared laser device applications: revisited

Subhasis Das, Gopal C. Bhar, Sudipto Gangopadhyay, and Chittaranjan Ghosh
Appl. Opt. 42(21) 4335-4340 (2003)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Springer, 1999).
  2. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
    [Crossref]
  3. W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
    [Crossref]
  4. W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
    [Crossref]
  5. D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
    [Crossref]
  6. J. D. Rowley, J. K. Pierce, A. T. Brant, L. E. Halliburton, N. C. Giles, P. G. Schunemann, and A. D. Bristow, “Broadband terahertz pulse emission from ZnGeP2.,” Opt. Lett. 37(5), 788–790 (2012).
    [Crossref] [PubMed]
  7. J. D. Rowley, D. A. Bas, K. T. Zawilski, P. G. Schunemann, and A. D. Bristow, “Terahertz emission from ZnGeP2: phase-matching, intensity, and length scalability,” J. Opt. Soc. Am. B 30(11), 2882–2888 (2013).
    [Crossref]
  8. B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
    [Crossref]
  9. D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77(11), 5942–5945 (1995).
    [Crossref]
  10. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18(9), 1307–1310 (2001).
    [Crossref]
  11. V. D. Antsygin, A. B. Kaplun, A. A. Mamrashev, N. A. Nikolaev, and O. I. Potaturkin, “Terahertz optical properties of Potassium titanyl phosphate crystals,” Opt. Express 22(21), 25436–25443 (2014).
    [Crossref] [PubMed]
  12. S. Wang, Q. Liang, X. Tao, and T. Dekorsy, “Optical properties and birefringence in LiInS2 in the terahertz frequency range,” Opt. Mater. Express 4(4), 575–586 (2014).
    [Crossref]
  13. Q. Liang, S. Wang, X. Tao, and T. Dekorsy, “Optical properties of LiInSe2 in the THz frequency regime,” Opt. Mater. Express 4(7), 1336–1344 (2014).
    [Crossref]
  14. G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin, “ZnGeP2 synthesis and growth from melt,” Mater. Sci. Eng. B 48(3), 191–197 (1997).
    [Crossref]
  15. K. T. Zawilski, P. G. Schunemann, S. D. Setaler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
    [Crossref]
  16. M. J. Tang, Z. R. Yuan, Y. Zhang, Y. W. Dou, P. Fang, Y. Chen, W. L. Ying, and B. Kang, “Growth and characterization of large-size ZnGeP2 single crystal with vertical gradient freezing method,” Proceedings of the 17th National Crystal Growth and Materials Conference, cccg17–0069 (2015). (in Chinese)
  17. B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).
  18. S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
    [Crossref]
  19. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  20. L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
    [Crossref]
  21. G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17(7), 860–861 (1987).
    [Crossref]
  22. M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
    [Crossref]
  23. R. Atalay, “Optical and structural properties of indium nitride epilayers grown by high-pressure chemical vapor deposition and vibrational studies of ZGP single crystal,” Dissertation, Georgia State University (2012).
  24. A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
    [Crossref]
  25. F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies,” Cryst. Res. Technol. 34(3), 339–349 (1999).
    [Crossref]

2017 (2)

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

2016 (2)

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

2014 (3)

2013 (1)

2012 (1)

2008 (2)

K. T. Zawilski, P. G. Schunemann, S. D. Setaler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[Crossref]

2007 (1)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2004 (1)

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[Crossref]

2003 (1)

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

2001 (1)

1999 (2)

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies,” Cryst. Res. Technol. 34(3), 339–349 (1999).
[Crossref]

1997 (1)

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin, “ZnGeP2 synthesis and growth from melt,” Mater. Sci. Eng. B 48(3), 191–197 (1997).
[Crossref]

1996 (1)

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

1995 (1)

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77(11), 5942–5945 (1995).
[Crossref]

1987 (1)

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17(7), 860–861 (1987).
[Crossref]

Antsygin, V. D.

Bas, D. A.

Bhar, G. C.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17(7), 860–861 (1987).
[Crossref]

Brant, A. T.

Bristow, A. D.

Carnio, B. N.

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

Chen, Y.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Chicklis, E. P.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Coutaz, J. L.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Creeden, D.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Das, S.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17(7), 860–861 (1987).
[Crossref]

Dekorsy, T.

Ding, Y. J.

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[Crossref]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

Dou, Y. W.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Dove, W.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Duvillaret, L.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Elezzabi, A. Y.

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

Fang, P.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Firby, J.

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

Fischer, D. W.

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77(11), 5942–5945 (1995).
[Crossref]

Garet, F.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Ghosh, D. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17(7), 860–861 (1987).
[Crossref]

Giles, N. C.

Greig, S. R.

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

Gribenyukov, A. I.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin, “ZnGeP2 synthesis and growth from melt,” Mater. Sci. Eng. B 48(3), 191–197 (1997).
[Crossref]

Guo, S. B.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

Haeuseler, H.

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies,” Cryst. Res. Technol. 34(3), 339–349 (1999).
[Crossref]

Halliburton, L. E.

Hanning, E. A.

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Holtz, M.

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Kang, B.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Kaplun, A. B.

Ketteridge, P. A.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Komiak, J. J.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Korotkova, V. V.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin, “ZnGeP2 synthesis and growth from melt,” Mater. Sci. Eng. B 48(3), 191–197 (1997).
[Crossref]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Liang, Q.

Liu, C.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

Mamrashev, A. A.

McCarthy, J. C.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Mintairov, A. M.

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Nikishin, S. A.

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Nikolaev, N. A.

Ohmer, M. C.

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77(11), 5942–5945 (1995).
[Crossref]

Ohrendorf, F. W.

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies,” Cryst. Res. Technol. 34(3), 339–349 (1999).
[Crossref]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Péter, Á.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Pierce, J. K.

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, S. D. Setaler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77(11), 5942–5945 (1995).
[Crossref]

Potaturkin, O. I.

Rowley, J. D.

Ruzaikin, M. P.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin, “ZnGeP2 synthesis and growth from melt,” Mater. Sci. Eng. B 48(3), 191–197 (1997).
[Crossref]

Sadchikov, N. A.

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Samanta, L. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17(7), 860–861 (1987).
[Crossref]

Sauncy, T.

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Schunemann, P. G.

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

J. D. Rowley, D. A. Bas, K. T. Zawilski, P. G. Schunemann, and A. D. Bristow, “Terahertz emission from ZnGeP2: phase-matching, intensity, and length scalability,” J. Opt. Soc. Am. B 30(11), 2882–2888 (2013).
[Crossref]

J. D. Rowley, J. K. Pierce, A. T. Brant, L. E. Halliburton, N. C. Giles, P. G. Schunemann, and A. D. Bristow, “Broadband terahertz pulse emission from ZnGeP2.,” Opt. Lett. 37(5), 788–790 (2012).
[Crossref] [PubMed]

K. T. Zawilski, P. G. Schunemann, S. D. Setaler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[Crossref]

D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18(9), 1307–1310 (2001).
[Crossref]

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77(11), 5942–5945 (1995).
[Crossref]

Seryogin, G. A.

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Setaler, S. D.

K. T. Zawilski, P. G. Schunemann, S. D. Setaler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

Shi, W.

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[Crossref]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

Southward, T.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Tang, M. J.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Tao, X.

Temkin, H.

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Verozubova, G. A.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin, “ZnGeP2 synthesis and growth from melt,” Mater. Sci. Eng. B 48(3), 191–197 (1997).
[Crossref]

Vodopyanov, K. L.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[Crossref]

Wang, M.

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

Wang, M. R.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

Wang, S.

Wang, W. P.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

Xiao, Y.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

Xu, D.

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

Xu, D. G.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

Yao, J.

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

Yao, J. Q.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

Yin, W. L.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Yuan, Z. R.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Zawilski, K. T.

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

J. D. Rowley, D. A. Bas, K. T. Zawilski, P. G. Schunemann, and A. D. Bristow, “Terahertz emission from ZnGeP2: phase-matching, intensity, and length scalability,” J. Opt. Soc. Am. B 30(11), 2882–2888 (2013).
[Crossref]

K. T. Zawilski, P. G. Schunemann, S. D. Setaler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

Zelmon, D. E.

Zhang, Y.

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

Zhong, K.

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

Appl. Phys. Lett. (2)

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

B. N. Carnio, S. R. Greig, J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. Lett. 108(26), 261109 (2016).
[Crossref]

Chin. Phys. B (1)

S. B. Guo, K. Zhong, M. R. Wang, C. Liu, Y. Xiao, W. P. Wang, D. G. Xu, and J. Q. Yao, “Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics,” Chin. Phys. B 26(1), 019501 (2017).
[Crossref]

Cryst. Res. Technol. (1)

F. W. Ohrendorf and H. Haeuseler, “Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies,” Cryst. Res. Technol. 34(3), 339–349 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

J. Appl. Phys. (2)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77(11), 5942–5945 (1995).
[Crossref]

J. Chin. Ceramic Soc. (1)

B. Kang, Y. W. Dou, M. J. Tang, Z. R. Yuan, P. Fang, Y. Zhang, Y. Chen, and W. L. Yin, “Growth of pure ZnGeP2 crystals by horizontal gradient freeze method and its properties,” J. Chin. Ceramic Soc. 44(4), 503–507 (2016).

J. Cryst. Growth (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setaler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[Crossref]

Mater. Sci. Eng. B (1)

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin, “ZnGeP2 synthesis and growth from melt,” Mater. Sci. Eng. B 48(3), 191–197 (1997).
[Crossref]

Opt. Commun. (1)

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[Crossref]

Opt. Eng. (1)

M. Wang, K. Zhong, C. Liu, D. Xu, W. Shi, and J. Yao, “Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle,” Opt. Eng. 56(4), 044101 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. B (1)

A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, “Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2,” Phys. Rev. B 59(23), 15197–15207 (1999).
[Crossref]

Sov. J. Quantum Electron. (1)

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17(7), 860–861 (1987).
[Crossref]

Other (3)

R. Atalay, “Optical and structural properties of indium nitride epilayers grown by high-pressure chemical vapor deposition and vibrational studies of ZGP single crystal,” Dissertation, Georgia State University (2012).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Springer, 1999).

M. J. Tang, Z. R. Yuan, Y. Zhang, Y. W. Dou, P. Fang, Y. Chen, W. L. Ying, and B. Kang, “Growth and characterization of large-size ZnGeP2 single crystal with vertical gradient freezing method,” Proceedings of the 17th National Crystal Growth and Materials Conference, cccg17–0069 (2015). (in Chinese)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagrams of the measurement systems: (a) THz TDS with high-speed optical sampling; (b) FTIR in Michelson interferometer mode.

Fig. 2
Fig. 2

Time-domain signal and Fourier transformed frequency-domain spectra for (100) samples: (a) HGF grown crystal; (b) VGF grown crystal.

Fig. 3
Fig. 3

TDS measurements of the (100) samples grown by HGF and VGF techniques: (a) Refractive indices; (b) Absorption coefficients.

Fig. 4
Fig. 4

Typical interferogram (a) and the Fourier transformed spectrum (b) of a ZGP sample.

Fig. 5
Fig. 5

FTIR measurements of ZGP transmittance grown by HGF and VGF techniques: (a) (100) samples (b) (001) samples.

Fig. 6
Fig. 6

Refractive index (a) and absorption coefficient (b) for (100) samples grown by HGF and VGF techniques measured by FTIR.

Tables (1)

Tables Icon

Table 1 Comparison of measured refractive index and birefringence of HGF and VGF grown crystals by TDS and FTIR.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n=n( ω )=1+ ϕc ωd
κ( ω )= c ωd ln[ ( n( ω )+1 ) 2 4n( ω ) A ]
α( ω )=2 κ( ω )ω c = 2 d ln[ ( n( ω )+1 ) 2 4n( ω ) A ]
2nd=m λ 1 =(m+1) λ 2
ε(v)= ε + i=1 n s i v i 2 v i 2 v 2 +i γ i v
ε 2 ( ν )= n ^ =n( ν )+iκ(ν)

Metrics