Abstract

This paper presents the effects of temperature and n-type doping concentration on the energy band gap of β-Ga2O3 thin films grown on c-plane sapphire substrates by low pressure chemical vapor deposition (LPCVD). The β-Ga2O3 thin films were grown using high purity gallium (Ga) and oxygen (O2) as precursors, and Si as the n-type dopant. The transmission electron microscopy (TEM) diffraction pattern showed that the thin films are single crystals that have a monoclinic crystal structure. The dependence of the energy band gap on temperature and n-type doping concentration have been experimentally determined from photoluminescence excitation (PLE) and absorbance spectra. The PLE spectra were measured in the temperature range of 77-298 K. The results indicate that both temperature and carrier concentration play important roles in determining the energy band gap of β-Ga2O3 thin films. The optical gap increased with the electron concentration for ne ≤ 2.52x1018 cm−3, which is due to the dominant Burstein-Moss (BM) shift. The sudden decrease in the energy gap at a doping concentration of 6.23x1018 – 3.05x1019 cm−3 is consistent with the theoretical prediction of Mott criterion for Ga2O3 semiconductor-metal transition. The energy band gap shrinks with an increasing temperature from 77 to 298 K.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology

Daoyou Guo, Zhenping Wu, Peigang Li, Yuehua An, Han Liu, Xuncai Guo, Hui Yan, Guofeng Wang, Changlong Sun, Linghong Li, and Weihua Tang
Opt. Mater. Express 4(5) 1067-1076 (2014)

Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips

Ching-Hwa Ho, Chiao-Yeh Tseng, and Li-Chia Tien
Opt. Express 18(16) 16360-16369 (2010)

The study of optical band edge property of bismuth oxide nanowires α-Bi2O3

Ching-Hwa Ho, Ching-Hsiang Chan, Ying-Sheng Huang, Li-Chia Tien, and Liang-Chiun Chao
Opt. Express 21(10) 11965-11972 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
    [Crossref]
  2. T. Kawaharamura, G. T. Dang, and M. Furuta, “Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 040207 (2012).
  3. H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
    [Crossref]
  4. N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
    [Crossref]
  5. M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
    [Crossref]
  6. K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
    [Crossref]
  7. X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
    [Crossref]
  8. S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A Phys. 232, 208–213 (2015).
    [Crossref]
  9. S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
    [Crossref]
  10. T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3 (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8(3), 031101 (2015).
    [Crossref]
  11. E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
    [Crossref]
  12. Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220(4), 510–514 (2000).
    [Crossref]
  13. H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
    [Crossref]
  14. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
    [Crossref]
  15. Y. Oshima, E. G. Villora, and K. Shimamura, “Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy,” J. Cryst. Growth 410, 53–58 (2015).
    [Crossref]
  16. S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
    [Crossref]
  17. S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
    [Crossref]
  18. S. Rafique, L. Han, and H. Zhao, “Synthesis of wide bandgap Ga2O3 (Eg∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 1002–1009 (2016).
    [Crossref]
  19. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
    [Crossref]
  20. D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
    [Crossref] [PubMed]
  21. C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
    [Crossref]
  22. H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88(26), 261904 (2006).
    [Crossref]
  23. J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010).
    [Crossref]
  24. F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
    [Crossref]
  25. K. N. Shinde, S. J. Dhoble, H. C. Swart, and K. Park, Phosphate Phosphors for Solid-State Lighting (Springer, 2012), Chap. 2.
  26. B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10(2), 676–681 (1974).
    [Crossref]
  27. B. Monemar, “Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra,” Phys. Rev. B 8(12), 5711–5718 (1973).
    [Crossref]
  28. Y. Tokida and S. Adachi, “Photoluminescent Properties of Eu3+ in Ga2O3:Cr3+ Films Prepared by Metal Organic Deposition,” Jpn. J. Appl. Phys. 52(10R), 101102 (2013).
    [Crossref]
  29. P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
    [Crossref]
  30. Q. Guo and A. Yoshida, “Temperature dependence of band gap change in InN and AlN,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2453–2456 (1994).
    [Crossref]
  31. S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
    [Crossref]
  32. K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals,” Appl. Phys. Lett. 92(20), 201914 (2008).
    [Crossref]
  33. K. Yamaguchi, “First principles study on electronic structure of β-Ga2O3,” Solid State Commun. 131(12), 739–744 (2004).
    [Crossref]
  34. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
    [Crossref]
  35. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  36. H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
    [Crossref]
  37. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
    [Crossref]
  38. T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
    [Crossref]
  39. S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
    [Crossref]
  40. Z. M. Gibbs, A. D. Lalonde, and G. J. Snyder, “Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy,” New J. Phys. 15(7), 075020 (2013).
    [Crossref]
  41. T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
    [Crossref]
  42. J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
    [Crossref]
  43. A. Walsh, J. L. F. Da Silva, and S.-H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B 78(7), 075211 (2008).
    [Crossref]
  44. E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
    [Crossref]
  45. R. J. Van Overstraeten and R. P. Mertens, “Heavy doping effects in silicon,” Solid-State Electron. 30(11), 1077–1087 (1987).
    [Crossref]
  46. J. W. Slotboom and H. C. De Graaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electron. 19(10), 857–862 (1976).
    [Crossref]

2017 (6)

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

2016 (8)

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
[Crossref]

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

S. Rafique, L. Han, and H. Zhao, “Synthesis of wide bandgap Ga2O3 (Eg∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 1002–1009 (2016).
[Crossref]

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

2015 (5)

Y. Oshima, E. G. Villora, and K. Shimamura, “Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy,” J. Cryst. Growth 410, 53–58 (2015).
[Crossref]

S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
[Crossref]

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3 (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8(3), 031101 (2015).
[Crossref]

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A Phys. 232, 208–213 (2015).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

2014 (3)

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

2013 (4)

Y. Tokida and S. Adachi, “Photoluminescent Properties of Eu3+ in Ga2O3:Cr3+ Films Prepared by Metal Organic Deposition,” Jpn. J. Appl. Phys. 52(10R), 101102 (2013).
[Crossref]

C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
[Crossref]

S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
[Crossref]

Z. M. Gibbs, A. D. Lalonde, and G. J. Snyder, “Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy,” New J. Phys. 15(7), 075020 (2013).
[Crossref]

2012 (1)

T. Kawaharamura, G. T. Dang, and M. Furuta, “Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 040207 (2012).

2010 (1)

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010).
[Crossref]

2008 (2)

K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals,” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

A. Walsh, J. L. F. Da Silva, and S.-H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B 78(7), 075211 (2008).
[Crossref]

2007 (1)

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

2006 (2)

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88(26), 261904 (2006).
[Crossref]

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

2004 (2)

K. Yamaguchi, “First principles study on electronic structure of β-Ga2O3,” Solid State Commun. 131(12), 739–744 (2004).
[Crossref]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
[Crossref]

2000 (1)

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220(4), 510–514 (2000).
[Crossref]

1994 (1)

Q. Guo and A. Yoshida, “Temperature dependence of band gap change in InN and AlN,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2453–2456 (1994).
[Crossref]

1991 (1)

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

1987 (1)

R. J. Van Overstraeten and R. P. Mertens, “Heavy doping effects in silicon,” Solid-State Electron. 30(11), 1077–1087 (1987).
[Crossref]

1986 (1)

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[Crossref]

1976 (1)

J. W. Slotboom and H. C. De Graaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electron. 19(10), 857–862 (1976).
[Crossref]

1974 (1)

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10(2), 676–681 (1974).
[Crossref]

1973 (1)

B. Monemar, “Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra,” Phys. Rev. B 8(12), 5711–5718 (1973).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

1951 (1)

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
[Crossref]

Adachi, S.

Y. Tokida and S. Adachi, “Photoluminescent Properties of Eu3+ in Ga2O3:Cr3+ Films Prepared by Metal Organic Deposition,” Jpn. J. Appl. Phys. 52(10R), 101102 (2013).
[Crossref]

Ahn, S.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Akaiwa, K.

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

Albrecht, M.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

An, Y.

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

Aoki, K.

K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals,” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
[Crossref]

Arab, S.

S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
[Crossref]

Baldini, M.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

Blanco, M. A.

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88(26), 261904 (2006).
[Crossref]

Chabak, K. D.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Chen, X.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Chikoidze, E.

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

Christiansen, S.

S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
[Crossref]

Crespo, A.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Cronin, S. B.

S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
[Crossref]

Cui, C.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

Cui, W.

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

Da Silva, J. L. F.

A. Walsh, J. L. F. Da Silva, and S.-H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B 78(7), 075211 (2008).
[Crossref]

Dang, G. T.

T. Kawaharamura, G. T. Dang, and M. Furuta, “Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 040207 (2012).

Dapkus, P. D.

S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
[Crossref]

De Graaff, H. C.

J. W. Slotboom and H. C. De Graaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electron. 19(10), 857–862 (1976).
[Crossref]

Dhawan, A.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Dumont, Y.

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

Eddy, C. R.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Everitt, H. O.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Fan, H. Y.

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
[Crossref]

Farahani, S. K. V.

S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
[Crossref]

Fiedler, A.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

Foley, C. P.

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[Crossref]

Freitas, J. A.

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

French, R. H.

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

Fujita, S.

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Fukuda, T.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220(4), 510–514 (2000).
[Crossref]

Furuta, M.

T. Kawaharamura, G. T. Dang, and M. Furuta, “Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 040207 (2012).

Gibbs, Z. M.

Z. M. Gibbs, A. D. Lalonde, and G. J. Snyder, “Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy,” New J. Phys. 15(7), 075020 (2013).
[Crossref]

Gollakota, P.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Goto, K.

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

Green, A. J.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Guo, D.

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

Guo, Q.

Q. Guo and A. Yoshida, “Temperature dependence of band gap change in InN and AlN,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2453–2456 (1994).
[Crossref]

Guo, Q. X.

F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
[Crossref]

Guo, X.

Han, L.

S. Rafique, L. Han, and H. Zhao, “Synthesis of wide bandgap Ga2O3 (Eg∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 1002–1009 (2016).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

Harada, K.

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3 (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8(3), 031101 (2015).
[Crossref]

He, H.

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88(26), 261904 (2006).
[Crossref]

He, H. P.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Heller, E. R.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Higashiwaki, M.

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

Hite, J. K.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Honda, T.

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

Horng, R.-H.

C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
[Crossref]

Huang, C.-Y.

C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
[Crossref]

Ichinose, N.

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
[Crossref]

Irmscher, K.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

Janotti, A.

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010).
[Crossref]

Jessen, G. H.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Jung, Y.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Kamada, Y.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Kaneko, K.

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

Kao, H.-S.

C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
[Crossref]

Kasu, M.

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3 (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8(3), 031101 (2015).
[Crossref]

Kawaharamura, T.

T. Kawaharamura, G. T. Dang, and M. Furuta, “Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 040207 (2012).

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Kim, J.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Kita, M.

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

Klimm, D.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220(4), 510–514 (2000).
[Crossref]

Koga, Y.

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3 (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8(3), 031101 (2015).
[Crossref]

Kokubun, Y.

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A Phys. 232, 208–213 (2015).
[Crossref]

Konishi, K.

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

Kumagai, Y.

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

Kumar, S.

S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
[Crossref]

Kuramata, A.

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

Lalonde, A. D.

Z. M. Gibbs, A. D. Lalonde, and G. J. Snyder, “Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy,” New J. Phys. 15(7), 075020 (2013).
[Crossref]

Leedy, K. D.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Li, C.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

Li, L.

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

Li, P.

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

Liu, H.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

Lu, J. G.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Lunardi, L. M.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Mahadik, N. A.

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

Mastro, M. A.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Masui, T.

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

Mccandless, J. P.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Mcconville, C. F.

S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
[Crossref]

Mertens, R. P.

R. J. Van Overstraeten and R. P. Mertens, “Heavy doping effects in silicon,” Solid-State Electron. 30(11), 1077–1087 (1987).
[Crossref]

Monemar, B.

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10(2), 676–681 (1974).
[Crossref]

B. Monemar, “Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra,” Phys. Rev. B 8(12), 5711–5718 (1973).
[Crossref]

Morimoto, S.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

Moser, N. A.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Mou, S.

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

Murakami, H.

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

Muth, J. F.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Nakagomi, S.

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A Phys. 232, 208–213 (2015).
[Crossref]

Nakata, Y.

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
[Crossref]

Neal, A. T.

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

Nishinaka, H.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Nishio, M.

F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
[Crossref]

O’Donnell, K. P.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Oh, S.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Ohshima, T.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Oishi, T.

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3 (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8(3), 031101 (2015).
[Crossref]

Okumura, H.

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

Onuma, T.

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

Oshima, Y.

Y. Oshima, E. G. Villora, and K. Shimamura, “Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy,” J. Cryst. Growth 410, 53–58 (2015).
[Crossref]

Pandey, R.

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88(26), 261904 (2006).
[Crossref]

Pearton, S. J.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Peixoto, N.

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

Peng, H. Y.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Perez, J. Z.

S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
[Crossref]

Rafique, S.

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

S. Rafique, L. Han, and H. Zhao, “Synthesis of wide bandgap Ga2O3 (Eg∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 1002–1009 (2016).
[Crossref]

Reiche, P.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220(4), 510–514 (2000).
[Crossref]

Ren, F.

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Saito, K.

F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
[Crossref]

Saito, S.

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

Sanjose, V. M.

S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
[Crossref]

Sarau, G.

S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
[Crossref]

Saripalli, Y. N.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Sasaki, K.

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

Sato, T.-A.

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A Phys. 232, 208–213 (2015).
[Crossref]

Schewski, R.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

Shigematsu, E.

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

Shimamura, K.

Y. Oshima, E. G. Villora, and K. Shimamura, “Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy,” J. Cryst. Growth 410, 53–58 (2015).
[Crossref]

K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals,” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
[Crossref]

Singh, R.

S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
[Crossref]

Slotboom, J. W.

J. W. Slotboom and H. C. De Graaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electron. 19(10), 857–862 (1976).
[Crossref]

Snyder, G. J.

Z. M. Gibbs, A. D. Lalonde, and G. J. Snyder, “Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy,” New J. Phys. 15(7), 075020 (2013).
[Crossref]

Speck, J. S.

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

Sun, C.

Tadjer, M. J.

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

Tahara, D.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

Takahashi, Y.

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A Phys. 232, 208–213 (2015).
[Crossref]

Tanaka, T.

F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
[Crossref]

Tang, W.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

Tansley, T. L.

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[Crossref]

Tessarek, C.

S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
[Crossref]

Tokida, Y.

Y. Tokida and S. Adachi, “Photoluminescent Properties of Eu3+ in Ga2O3:Cr3+ Films Prepared by Metal Organic Deposition,” Jpn. J. Appl. Phys. 52(10R), 101102 (2013).
[Crossref]

Tomm, Y.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220(4), 510–514 (2000).
[Crossref]

Tu, L.-W.

C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
[Crossref]

Ujiie, T.

K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals,” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

Van De Walle, C. G.

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010).
[Crossref]

Van Overstraeten, R. J.

R. J. Van Overstraeten and R. P. Mertens, “Heavy doping effects in silicon,” Solid-State Electron. 30(11), 1077–1087 (1987).
[Crossref]

Varley, J. B.

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Veal, T. D.

S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
[Crossref]

Villora, E. G.

Y. Oshima, E. G. Villora, and K. Shimamura, “Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy,” J. Cryst. Growth 410, 53–58 (2015).
[Crossref]

K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals,” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
[Crossref]

Von Bardeleben, H. J.

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

Wagner, G.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

Walsh, A.

A. Walsh, J. L. F. Da Silva, and S.-H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B 78(7), 075211 (2008).
[Crossref]

Wang, G.

Wang, S.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

Weber, J. R.

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010).
[Crossref]

Wei, S.-H.

A. Walsh, J. L. F. Da Silva, and S.-H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B 78(7), 075211 (2008).
[Crossref]

Wellenius, P.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Wong, M. H.

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
[Crossref]

Wu, Z.

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067 (2014).
[Crossref]

Wuu, D.-S.

C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
[Crossref]

Yamaguchi, K.

K. Yamaguchi, “First principles study on electronic structure of β-Ga2O3,” Solid State Commun. 131(12), 739–744 (2004).
[Crossref]

Yamaguchi, T.

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

Yamakoshi, S.

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

Yan, H.

Yao, M.

S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
[Crossref]

Ye, Z. Z.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Yoshida, A.

Q. Guo and A. Yoshida, “Temperature dependence of band gap change in InN and AlN,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2453–2456 (1994).
[Crossref]

Yoshikawa, Y.

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
[Crossref]

Yoshimoto, M.

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

Zeng, Y. J.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Zhang, F. B.

F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
[Crossref]

Zhang, Y. Z.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Zhao, B. H.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

Zhao, H.

S. Rafique, L. Han, and H. Zhao, “Synthesis of wide bandgap Ga2O3 (Eg∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 1002–1009 (2016).
[Crossref]

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

Zhao, X.

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

Zhou, C.

S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
[Crossref]

Zhu, L. P.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

ACS Appl. Mater. Interfaces (1)

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction,” ACS Appl. Mater. Interfaces 9(2), 1619–1628 (2017).
[Crossref] [PubMed]

Adv. Eng. Mater. (1)

S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, and R. Singh, “Self‐Catalytic Growth of β‐Ga2O3 Nanostructures by Chemical Vapor Deposition,” Adv. Eng. Mater. 17(5), 709–715 (2015).
[Crossref]

Appl. Phys. Express (3)

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10(4), 041101 (2017).
[Crossref]

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3 (−201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8(3), 031101 (2015).
[Crossref]

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, “Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 7(9), 095501 (2014).
[Crossref]

Appl. Phys. Lett. (13)

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109(13), 132103 (2016).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108(18), 182105 (2016).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110(10), 103506 (2017).
[Crossref]

N. A. Moser, J. P. Mccandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110(14), 143505 (2017).
[Crossref]

C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 102(1), 011119 (2013).
[Crossref]

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88(26), 261904 (2006).
[Crossref]

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010).
[Crossref]

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

S. K. V. Farahani, V. M. Sanjose, J. Z. Perez, C. F. Mcconville, and T. D. Veal, “Temperature dependence of the direct bandgap and transport properties of CdO,” Appl. Phys. Lett. 102(2), 022102 (2013).
[Crossref]

K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals,” Appl. Phys. Lett. 92(20), 201914 (2008).
[Crossref]

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, “Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β−Ga2O3 single crystals,” Appl. Phys. Lett. 108(10), 101904 (2016).
[Crossref]

S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires,” Appl. Phys. Lett. 108(18), 182106 (2016).
[Crossref]

J. Appl. Phys. (3)

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[Crossref]

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO: Al films,” J. Appl. Phys. 101(8), 083705 (2007).
[Crossref]

E. Chikoidze, H. J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, and Y. Dumont, “Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films,” J. Appl. Phys. 120(2), 025109 (2016).
[Crossref]

J. Cryst. Growth (4)

F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 387, 96–100 (2014).
[Crossref]

Y. Oshima, E. G. Villora, and K. Shimamura, “Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy,” J. Cryst. Growth 410, 53–58 (2015).
[Crossref]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270(3-4), 420–426 (2004).
[Crossref]

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220(4), 510–514 (2000).
[Crossref]

J. Electron. Mater. (1)

X. Zhao, W. Cui, Z. Wu, D. Guo, P. Li, Y. An, L. Li, and W. Tang, “Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector,” J. Electron. Mater. 46(4), 2366–2372 (2017).
[Crossref]

J. Mater. Sci. (1)

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, “Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy,” J. Mater. Sci. 51(7), 3650–3656 (2016).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B 34(4), 041207 (2016).
[Crossref]

Jpn. J. Appl. Phys. (4)

T. Kawaharamura, G. T. Dang, and M. Furuta, “Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 040207 (2012).

Q. Guo and A. Yoshida, “Temperature dependence of band gap change in InN and AlN,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2453–2456 (1994).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54(11), 112601 (2015).
[Crossref]

Y. Tokida and S. Adachi, “Photoluminescent Properties of Eu3+ in Ga2O3:Cr3+ Films Prepared by Metal Organic Deposition,” Jpn. J. Appl. Phys. 52(10R), 101102 (2013).
[Crossref]

Mater. Lett. (1)

H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, “Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers,” Mater. Lett. 205, 28–31 (2017).
[Crossref]

New J. Phys. (1)

Z. M. Gibbs, A. D. Lalonde, and G. J. Snyder, “Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy,” New J. Phys. 15(7), 075020 (2013).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82(6), 900–905 (1951).
[Crossref]

Phys. Rev. B (3)

A. Walsh, J. L. F. Da Silva, and S.-H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B 78(7), 075211 (2008).
[Crossref]

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10(2), 676–681 (1974).
[Crossref]

B. Monemar, “Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra,” Phys. Rev. B 8(12), 5711–5718 (1973).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

S. Rafique, L. Han, and H. Zhao, “Synthesis of wide bandgap Ga2O3 (Eg∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 1002–1009 (2016).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Sens. Actuators A Phys. (1)

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A Phys. 232, 208–213 (2015).
[Crossref]

Solid State Commun. (1)

K. Yamaguchi, “First principles study on electronic structure of β-Ga2O3,” Solid State Commun. 131(12), 739–744 (2004).
[Crossref]

Solid-State Electron. (2)

R. J. Van Overstraeten and R. P. Mertens, “Heavy doping effects in silicon,” Solid-State Electron. 30(11), 1077–1087 (1987).
[Crossref]

J. W. Slotboom and H. C. De Graaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electron. 19(10), 857–862 (1976).
[Crossref]

Other (1)

K. N. Shinde, S. J. Dhoble, H. C. Swart, and K. Park, Phosphate Phosphors for Solid-State Lighting (Springer, 2012), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross sectional FESEM image of TEM sample prepared by FIB. The sample was prepared from a β-Ga2O3 heteroepitaxial layer (6 μm) grown on c-plane sapphire substrate for 1 hour.

Fig. 2
Fig. 2

(a-b) HRTEM images of β-Ga2O3 heteroepitaxial layer showing the lattice fringes. (c) SAED pattern of β-Ga2O3 layer taken along [172] zone axis. (d) SAED pattern of β-Ga2O3 layer generated by JEMS.

Fig. 3
Fig. 3

(a) Photoluminescence excitation spectra measured at different temperatures (77-298 K) for a Si-doped β-Ga2O3 thin film with doping concentration of 2.5x1018 cm−3. (b) PLE peak positions as a function of temperature for the same Si-doped β-Ga2O3 thin film.

Fig. 4
Fig. 4

(a) Optical absorbance spectra of Si-doped β-Ga2O3 thin films with different doping concentrations. (Inset: Tauc plot of a β-Ga2O3 thin film with carrier concentration of 2.52x1018 cm−3); (b) Band gap energy as a function of n-type carrier concentration for Si-doped β-Ga2O3 thin films.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E g (T)= E g (0)- α T 2 (β+T)