Abstract

We report an experimental analysis of new hafnia-yttria-alumina-silica glass based fiber doped with bismuth (Bi), with absorption/fluorescence spectra along with resonant-absorption saturation, fluorescence lifetime, and gain, all adherent to Bi-related active centers (BACs), being measured at laser-diode excitation @ 908, 976, 1069, and 1120 nm, matching the NIR BACs’ band. The found spectral laws reveal the optimal on excitation wavelength fluorescence, resonant-absorption bleaching, and gain capacities of the fiber, useful for applications at diode pumping. Besides, we report, for the first time to the best of our knowledge, a new resonant-absorption band of BACs in mid-IR (~2.1 µm) in the fiber, effectively bleached under the action of low-power in-band excitation, and provide the reasons for its association with co-doping the fiber with hafnium.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, and A. N. Guryanov, “Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibers,” in Proc. 31st European Conference on Optics Communications (Glasgow, Scotland, 2005) Paper Th.3.3.5, pp. 949−950.
  2. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
  3. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
  4. E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).
  5. M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
  6. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
  7. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
  8. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
  9. V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
  10. E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
  11. E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
  12. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
  13. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
  14. L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).
  15. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
  16. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
  17. S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
  18. V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
  19. Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in Bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
  20. I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).
  21. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).
  22. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
  23. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
  24. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).
  25. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
  26. B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
  27. D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
  28. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).
  29. K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).
  30. D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
  31. A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
  32. M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
  33. E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).
  34. Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).
  35. D. L. Wood, K. Nassau, T. Y. Kometani, and D. L. Nash, “Optical properties of cubic hafnia stabilized with yttria,” Appl. Opt. 29(4), 604–607 (1990).
  36. D. Neumayer and E. Cartier, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys. 90(4), 1801–1808 (2001).
  37. S. Todoroki, K. Hirao, and N. Soga, “Origin of inhomogeneous linewidth of Eu3+ fluorescence in several oxide glasses,” J. Appl. Phys. 72(12), 5853–5860 (1992).
  38. A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).
  39. D. Benerjee, P. Das, R. Guin, and S. K. Das, “Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab-initio calculations,” J. Phys. Chem. Solids 73(9), 1090–1094 (2012).
  40. D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).
  41. J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

2017 (2)

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

2016 (1)

2015 (6)

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).

E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).

Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).

2014 (3)

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

2012 (3)

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

D. Benerjee, P. Das, R. Guin, and S. K. Das, “Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab-initio calculations,” J. Phys. Chem. Solids 73(9), 1090–1094 (2012).

2011 (6)

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).

2010 (3)

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in Bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).

I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

2009 (5)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).

2008 (5)

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).

M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).

2007 (1)

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

2005 (1)

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

2001 (1)

D. Neumayer and E. Cartier, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys. 90(4), 1801–1808 (2001).

1992 (1)

S. Todoroki, K. Hirao, and N. Soga, “Origin of inhomogeneous linewidth of Eu3+ fluorescence in several oxide glasses,” J. Appl. Phys. 72(12), 5853–5860 (1992).

1990 (1)

Aboites, V.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Alyshev, S. V.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

Arai, Y.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).

Arion, V.

Barmenkov, Y.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Barmenkov, Y. O.

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).

Benerjee, D.

D. Benerjee, P. Das, R. Guin, and S. K. Das, “Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab-initio calculations,” J. Phys. Chem. Solids 73(9), 1090–1094 (2012).

Berwal, N.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).

Bhadra, S.

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Bhadra, S. K.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

Bigot, L.

I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

Bouazaoui, M.

Bouwmans, G.

I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

Bufetov, I. A.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).

Bulatov, L. I.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

Cartier, E.

D. Neumayer and E. Cartier, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys. 90(4), 1801–1808 (2001).

Das, P.

D. Benerjee, P. Das, R. Guin, and S. K. Das, “Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab-initio calculations,” J. Phys. Chem. Solids 73(9), 1090–1094 (2012).

Das, S.

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Das, S. K.

D. Benerjee, P. Das, R. Guin, and S. K. Das, “Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab-initio calculations,” J. Phys. Chem. Solids 73(9), 1090–1094 (2012).

Denisov, L. K.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

Dhar, A.

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Dianov, E.

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).

Dianov, E. M.

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).

E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

Didenko, S. I.

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).

Douay, M.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

Dult, M.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).

Dutta, D.

Dvoretskii, D. A.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

Dvorin, V. V.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

Dvoyrin, V. V.

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

El Hamzaoui, H.

Favre, A.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

Firstov, S. V.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).

Firstova, E. G.

Fujimoto, Y.

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in Bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).

Guan, M.

Guin, R.

D. Benerjee, P. Das, R. Guin, and S. K. Das, “Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab-initio calculations,” J. Phys. Chem. Solids 73(9), 1090–1094 (2012).

Gur’yanov, A. N.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

Guryanov, A. N.

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

Halder, A.

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

Hirao, K.

S. Todoroki, K. Hirao, and N. Soga, “Origin of inhomogeneous linewidth of Eu3+ fluorescence in several oxide glasses,” J. Appl. Phys. 72(12), 5853–5860 (1992).

Hong, Z.

Hughes, M. A.

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).

Il’ichev, N. N.

Jung, M.

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

Kalita, M. P.

Khakhalin, A. V.

Khonton, S.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).

Khopin, V. F.

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).

Kir’yanov, A.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Kir’yanov, A. V.

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

Kishore, N.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).

Koltashev, V. V.

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).

Kometani, T. Y.

Kozlova, N. S.

Kundu, R. S.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).

Kustov, E. F.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

Le Rouge, A.

Lee, J.

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

Lee, J. H.

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

Lerouge, A.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).

Ma, Z.

Mashinsky, V. M.

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

Medvedkov, O. I.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

Mel’kumov, M. A.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

Melkumov, M.

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

Melkumov, M. A.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

Mermet, A.

Morimoto, S.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).

Nash, D. L.

Nassau, K.

Neumayer, D.

D. Neumayer and E. Cartier, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys. 90(4), 1801–1808 (2001).

Ohishi, Y.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).

Paul, M.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Paul, M. C.

Peng, M.

Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).

Plotnichenko, V. G.

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, V. G. Plotnichenko, V. V. Koltashev, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, “Hafnia-yttria-alumina-silicate optical fibers with diminished mid-IR (>2 µm) loss,” Opt. Mater. Express 7(7), 2511–2518 (2017).

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).

Punia, R.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

Qiu, J.

Ramirez-Granados, D.

D. Ramirez-Granados, A. V. Kir’yanov, Y. O. Barmenkov, A. Halder, S. Das, A. Dhar, M. C. Paul, S. Bhadra, S. I. Didenko, V. V. Koltashev, and V. G. Plotnichenko, “Effects of elevating temperature and hightemperature annealing upon state-of-the-art of yttia-alumino-silicate fibers doped with Bismuth,” Opt. Mater. Express 6(2), 486–508 (2016).

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

Razdobreev, I.

I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

Riumkin, K. E.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

Sahu, J.

Semjonov, S. L.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

Sholokhov, E. M.

Shubin, A. V.

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

Siddiki, S. H.

Soga, N.

S. Todoroki, K. Hirao, and N. Soga, “Origin of inhomogeneous linewidth of Eu3+ fluorescence in several oxide glasses,” J. Appl. Phys. 72(12), 5853–5860 (1992).

Sokolov, V. O.

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).

Sukhorukov, A. P.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

Suzuki, T.

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).

Tan, D.

Teng, Y.

Todoroki, S.

S. Todoroki, K. Hirao, and N. Soga, “Origin of inhomogeneous linewidth of Eu3+ fluorescence in several oxide glasses,” J. Appl. Phys. 72(12), 5853–5860 (1992).

Truong, V. G.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).

Umnikov, A. A.

K. E. Riumkin, M. A. Melkumov, I. A. Varfolomeev, A. V. Shubin, I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Excited-state absorption in various bismuth-doped fibers,” Opt. Lett. 39(8), 2503–2506 (2014).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

Varfolomeev, I. A.

Vel’miskin, V. V.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

Wondraczek, L.

Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).

Wood, D. L.

Xu, B.

Yashkov, M. V.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

Yoo, S.

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).

Zhang, Q.

Zhao, Y.

Zhou, J.

Zhou, S.

Zlenko, A. S.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).

IEEE J. Lightw. Technol. (1)

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).

IEEE J. Quantum Electron. (2)

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).

IEEE Photonics J. (1)

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).

J. Am. Ceram. Soc. (1)

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in Bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).

J. Appl. Phys. (3)

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, Y. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys. 109(2), 023113 (2011).

D. Neumayer and E. Cartier, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys. 90(4), 1801–1808 (2001).

S. Todoroki, K. Hirao, and N. Soga, “Origin of inhomogeneous linewidth of Eu3+ fluorescence in several oxide glasses,” J. Appl. Phys. 72(12), 5853–5860 (1992).

J. Mol. Struct. (1)

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).

J. Non-Cryst. Solids (1)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).

J. Phys. Chem. Solids (1)

D. Benerjee, P. Das, R. Guin, and S. K. Das, “Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab-initio calculations,” J. Phys. Chem. Solids 73(9), 1090–1094 (2012).

J. Phys. Condens. Matter (1)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).

J. Phys. D Appl. Phys. (1)

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).

Laser Phys. Lett. (3)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).

E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).

J. Lee, M. Jung, M. Melkumov, V. F. Khopin, E. M. Dianov, and J. H. Lee, “A saturable absorber based on bismuth-doped germanosilicate fiber for a 1.93 µm, mode-locked fiber laser,” Laser Phys. Lett. 14(6), 065104 (2017).

Light Sci. Appl. (1)

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (2)

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).

Opt. Mater. Express (3)

Proc. SPIE (1)

E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).

Quantum Electron. (4)

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).

Sci. (1)

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, ““Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad,” Sci. 72, 1655–1660 (2008).

Other (2)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, and A. N. Guryanov, “Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibers,” in Proc. 31st European Conference on Optics Communications (Glasgow, Scotland, 2005) Paper Th.3.3.5, pp. 949−950.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Radial distributions of the oxides constituting core-glass of multimode HYAS-BDF (without over-cladding), Al2O3, HfO2, Y2O3, and Bi2O3, obtained from the EPMA analysis, in mol.%; for Bi2O3 and Y2O3, the distributions are zoomed in inset. (b) Radial distribution of RI-difference, measured before over-cladding; inset: image of cleaved fiber.

Fig. 2
Fig. 2

Absorption spectra of HYAS-BDF: (a) in the whole spectral range spanned (using OSAs 1 & 2), where are specified the absorption peaks related to BACs Bi(Al) and cutoff peak (inset demonstrates the cross-sectional image of the fiber); (b) the ~1-µm BACs absorption band (enlarged), where are shown (by different colors) the pump wavelengths (908, 976, 1069, and 1120 nm), used in experiments (inset demonstrates the spectral region where the losses produced by OH-overtones and by BACs Bi(Si) are superimposed). λPi and λgain/laser define the spectral positions of the four pump and potential gain/laser wavelengths.

Fig. 3
Fig. 3

Fluorescence spectra of HYAS-BDF, obtained in ‘forward’ (a) and ‘backward’ (b) geometries at excitation at 908, 976, 1069, and 1120 nm, shown by different colors. The spectra were measured at PP = 150 mW, at either pump wavelength. The 800…1600 nm fluorescence is inherent to Bi(Al) BACs.

Fig. 4
Fig. 4

NIR (1.1…1.5 µm) fluorescence decay in HYAS-BDF. (main frame) Fluorescence lifetime vs. pump power (at excitation @908, 976, 1069, and 1120 nm; see curves 1 to 4 of different colors). (inset) Dependences of fluorescence signals vs. time, for PP = 150 mW.

Fig. 5
Fig. 5

Spectral dependences of on-off normalized (G/α0) gain in HYAS-BDF, measured as functions of pump wavelengths: 908 (a), 976 (b), 1069 (c), and 1120 (d) nm). Each set of the dependences in (a-d) was obtained for a few pump powers, specified in insets. Lengths of HYAS-BDF Lf were chosen such that the product Lfα0 equals to 0.4…0.5, at each λPi. Dashed orange line fits the eye to the level G/α0 = 1.

Fig. 6
Fig. 6

Nonlinear absorption (KNL) of HYAS-BDF: Dependences of KNL measured in function of pump wavelengths (a-d), where black asterisks show the ‘initial’ (small-signal) absorptions at these wavelengths, obtained from the absorption spectra, using OSA1 (refer to Fig. 1). For each pump wavelength, the data obtained with two HYAS-BDF lengths Lf, (insets) are plotted. Dashed arrows show the levels of un-bleached absorptions.

Fig. 7
Fig. 7

(a) Spectral dependences of small-signal (curve 1) and un-bleached (curve 2) absorptions and (b) spectrum of ‘bleaching contrast’ (curve 3) of HYAS-BDF.

Fig. 8
Fig. 8

(main frame) Nonlinear absorption KNL of HYAS-BDF: Dependences of KNL vs. pump power of broadband emission with central wavelength 2070 nm (black asterisk shows ‘initial’, or small-signal, absorption at this wavelength). The data were obtained using two fiber lengths (7 and 15 cm). Dashed arrow shows the level of un-saturated part of absorption (~15%). (inset) Absorption spectrum of HYAS-BDF in mid-IR at linear scaling.

Fig. 9
Fig. 9

Absorption spectra of (a) HYAS-BDF (‘A’) (grey curve) and AS Hf-doped Bi-free fiber (‘C’) (blue curve) and (b) AS Hf-free BDF (‘B’) (black curve) and AS Hf,Bi-free smf-28 ‘(D’) (green curve). The spectra were obtained using OSA1/OSA2. The BACs associated with Al, Si, and Hf/Y are abbreviated as Bi(Al), Bi(Si), and Bi(Hf), respectively. The loss features at ~1.4/~2.2 µm (marked ‘OH’) are associated with OH- groups contaminating.