Abstract

Organic integrated devices (OIDs) with ultraviolet (UV) photodetective and electroluminescent (EL) properties were fabricated using an aggregation-induced emission (AIE) featured material of 1,1,2,2-Tetraphenylethene (TPE) as host and a thermally activated delayed fluorescent (TADF) featured material of 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenzen (4CzIPN) as dopant (doping concentration includes: 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%) in a doping system as the active layer. The 15% 4CzIPN doping OID yielded a maximum luminance of 2995 cd/m2, a relatively high detectivity of 2.8 × 1011 Jones under an illumination of 365 nm light with an intensity of 0.9 mW/cm2. The current efficiency and power efficiency of the doped device were 3.26 fold and 3.17 fold higher than those of the non-doped device, respectively. The performance improvement was analyzed by using the theory of emission quenching suppression in the AIE process, energy transfer from host to dopant, and simulation of section energy distribution variations in the active layer with the increase of doping concentration. Thus, combining AIE materials with TADF materials as an active layer is an effective way to enhance the performance of OIDs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
0.6 – 1.6 THz band spectroscopy of organic thermally activated delayed fluorescence materials

Harunobu Takeda, Cong Chen, Takeshi Komino, Hiroaki Yoshioka, Yuji Oki, and Chihaya Adachi
Opt. Mater. Express 6(10) 3045-3052 (2016)

Improving working lifetime and efficiency of phosphor doped organic light-emitting diodes

Yunfei Li, Yuying Hao, Wenlian Li, Shuqing Yuan, Huihui Liu, Yanxia Cui, Hua Wang, Bingshe Xu, and Wei Huang
Opt. Express 21(14) 17020-17027 (2013)

Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer

Byoung-Ho Kang, Jun-Seon Seo, Sohee Jeong, Jihye Lee, Chang-Soo Han, Do-Eok Kim, Kyu-Jin Kim, Se-Hyuk Yeom, Dae-Hyuk Kwon, Hak-Rin Kim, and Shin-Won Kang
Opt. Express 18(17) 18303-18311 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Heeger, “25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation,” Adv. Mater. 26(1), 10–27 (2014).
    [Crossref] [PubMed]
  2. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
    [Crossref]
  3. D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
    [Crossref]
  4. X. Wang, J. Huang, J. Li, and J. Yu, “Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity,” J. Phys. D Appl. Phys. 49(7), 075102 (2016).
    [Crossref]
  5. J. Huang, Y. Qi, H. Wang, and J. Yu, “Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device,” Appl. Phys. Lett. 102(18), 183302 (2013).
    [Crossref]
  6. W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
    [Crossref]
  7. C. Li, M. Zhang, X. Chen, and Q. Li, “Fluorinated 9,9′-spirobifluorene derivative as host material for highly efficient blue fluorescent OLED,” Opt. Mater. Express 6(8), 2545–2553 (2016).
    [Crossref]
  8. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
    [Crossref] [PubMed]
  9. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
    [Crossref] [PubMed]
  10. S. H. Chung and H. Y. Noh, “Color-tunable stacked organic light-emitting diode with semi-transparent metal electrode,” Opt. Mater. Express 6(9), 2834–2840 (2016).
    [Crossref]
  11. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
    [Crossref] [PubMed]
  12. H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
    [Crossref]
  13. D. T. Thanh, J. Jin, K. B. Ko, B. D. Ryu, M. Han, T. V. Cuong, and C. H. Hong, “Hexagonal boron nitride pattern embedded in AIN template layer for visible-blind ultraviolet photodetectors,” Opt. Mater. Express 7(5), 1463–1472 (2017).
    [Crossref]
  14. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
    [Crossref]
  15. P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, “A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices,” Adv. Funct. Mater. 17(17), 3514–3520 (2007).
    [Crossref]
  16. D. Yang and D. Ma, “1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2054–2060 (2013).
    [Crossref]
  17. J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
    [Crossref] [PubMed]
  18. D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
    [Crossref]
  19. X. Wang, D. Zhou, J. Huang, and J. Yu, “High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter,” Appl. Phys. Lett. 107(4), 043303 (2015).
    [Crossref]
  20. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
    [Crossref] [PubMed]
  21. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
    [Crossref] [PubMed]
  22. S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
    [Crossref] [PubMed]
  23. Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
    [Crossref] [PubMed]
  24. E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
    [Crossref] [PubMed]
  25. S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
    [Crossref] [PubMed]
  26. I. H. Lee, W. Song, and J. Y. Lee, “Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes,” Org. Electron. 29, 22–26 (2016).
    [Crossref]
  27. Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
    [Crossref] [PubMed]
  28. F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, “Electronic transport in doped pyrenyl carbazole,” J. Phys. Chem. C 110(4), 044507 (2011).
  29. X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
    [Crossref]
  30. U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
    [Crossref]
  31. B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
    [Crossref]
  32. H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
    [Crossref] [PubMed]
  33. C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
    [Crossref]
  34. Y. Hong, J. W. Y. Lam, and B. Z. Tang, “Aggregation-induced emission: phenomenon, mechanism and applications,” Chem. Commun. (Camb.) 40(29), 4332–4353 (2009).
    [Crossref] [PubMed]
  35. J. Xue and S. R. Forrest, “Carrier transport in multilayer organic photodetectors: II. Effects of anode preparation,” J. Appl. Phys. 95(4), 1869–1877 (2004).
    [Crossref]

2017 (2)

D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
[Crossref]

D. T. Thanh, J. Jin, K. B. Ko, B. D. Ryu, M. Han, T. V. Cuong, and C. H. Hong, “Hexagonal boron nitride pattern embedded in AIN template layer for visible-blind ultraviolet photodetectors,” Opt. Mater. Express 7(5), 1463–1472 (2017).
[Crossref]

2016 (8)

C. Li, M. Zhang, X. Chen, and Q. Li, “Fluorinated 9,9′-spirobifluorene derivative as host material for highly efficient blue fluorescent OLED,” Opt. Mater. Express 6(8), 2545–2553 (2016).
[Crossref]

S. H. Chung and H. Y. Noh, “Color-tunable stacked organic light-emitting diode with semi-transparent metal electrode,” Opt. Mater. Express 6(9), 2834–2840 (2016).
[Crossref]

X. Wang, J. Huang, J. Li, and J. Yu, “Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity,” J. Phys. D Appl. Phys. 49(7), 075102 (2016).
[Crossref]

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

I. H. Lee, W. Song, and J. Y. Lee, “Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes,” Org. Electron. 29, 22–26 (2016).
[Crossref]

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

2015 (4)

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

X. Wang, D. Zhou, J. Huang, and J. Yu, “High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter,” Appl. Phys. Lett. 107(4), 043303 (2015).
[Crossref]

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

2014 (5)

A. J. Heeger, “25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation,” Adv. Mater. 26(1), 10–27 (2014).
[Crossref] [PubMed]

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
[Crossref] [PubMed]

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

2013 (3)

D. Yang and D. Ma, “1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2054–2060 (2013).
[Crossref]

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

J. Huang, Y. Qi, H. Wang, and J. Yu, “Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device,” Appl. Phys. Lett. 102(18), 183302 (2013).
[Crossref]

2012 (4)

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
[Crossref]

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

2011 (2)

F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, “Electronic transport in doped pyrenyl carbazole,” J. Phys. Chem. C 110(4), 044507 (2011).

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

2009 (3)

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Y. Hong, J. W. Y. Lam, and B. Z. Tang, “Aggregation-induced emission: phenomenon, mechanism and applications,” Chem. Commun. (Camb.) 40(29), 4332–4353 (2009).
[Crossref] [PubMed]

2007 (1)

P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, “A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices,” Adv. Funct. Mater. 17(17), 3514–3520 (2007).
[Crossref]

2005 (1)

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

2004 (1)

J. Xue and S. R. Forrest, “Carrier transport in multilayer organic photodetectors: II. Effects of anode preparation,” J. Appl. Phys. 95(4), 1869–1877 (2004).
[Crossref]

2001 (1)

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Adachi, C.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

Ali, F.

F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, “Electronic transport in doped pyrenyl carbazole,” J. Phys. Chem. C 110(4), 044507 (2011).

Bhansali, U. S.

U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
[Crossref]

Cai, W.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Cao, Y.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Chang, W. H.

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

Chen, H.

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Chen, P.

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Chen, R.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Chen, T.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Chen, X.

Chen, Y. H.

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

Chen, Z.

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

Cheng, C. H.

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

Cheng, L.

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Chi, Z.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Chien, C. H.

P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, “A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices,” Adv. Funct. Mater. 17(17), 3514–3520 (2007).
[Crossref]

Chou, H. H.

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

Chung, S. H.

Cuong, T. V.

Dou, L.

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Forrest, S. R.

J. Xue and S. R. Forrest, “Carrier transport in multilayer organic photodetectors: II. Effects of anode preparation,” J. Appl. Phys. 95(4), 1869–1877 (2004).
[Crossref]

Gao, D.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Gnade, B. E.

U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
[Crossref]

Gong, Q.

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

Gong, X.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Goushi, K.

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

Gui, S.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Guo, H.

D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
[Crossref]

Han, J.

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

Han, M.

He, Z.

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

Heeger, A. J.

A. J. Heeger, “25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation,” Adv. Mater. 26(1), 10–27 (2014).
[Crossref] [PubMed]

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Hong, C. H.

Hong, Y.

E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
[Crossref] [PubMed]

Y. Hong, J. W. Y. Lam, and B. Z. Tang, “Aggregation-induced emission: phenomenon, mechanism and applications,” Chem. Commun. (Camb.) 40(29), 4332–4353 (2009).
[Crossref] [PubMed]

Hong, Z.

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Hsu, H. P.

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

Hu, F.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Hu, S.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Huang, C. W.

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

Huang, J.

D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
[Crossref]

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

X. Wang, J. Huang, J. Li, and J. Yu, “Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity,” J. Phys. D Appl. Phys. 49(7), 075102 (2016).
[Crossref]

X. Wang, D. Zhou, J. Huang, and J. Yu, “High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter,” Appl. Phys. Lett. 107(4), 043303 (2015).
[Crossref]

J. Huang, Y. Qi, H. Wang, and J. Yu, “Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device,” Appl. Phys. Lett. 102(18), 183302 (2013).
[Crossref]

Huang, S.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Huang, W.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Huang, Y.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Jia, H.

U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
[Crossref]

Jin, J.

Jin, Y.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Kido, J.

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

Ko, K. B.

Kong, S.

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

Ku, S. Y.

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

Kwok, H. S.

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Lam, J. W. Y.

E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
[Crossref] [PubMed]

Y. Hong, J. W. Y. Lam, and B. Z. Tang, “Aggregation-induced emission: phenomenon, mechanism and applications,” Chem. Commun. (Camb.) 40(29), 4332–4353 (2009).
[Crossref] [PubMed]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Lee, I. H.

I. H. Lee, W. Song, and J. Y. Lee, “Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes,” Org. Electron. 29, 22–26 (2016).
[Crossref]

Lee, J. Y.

I. H. Lee, W. Song, and J. Y. Lee, “Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes,” Org. Electron. 29, 22–26 (2016).
[Crossref]

Leo, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Li, B.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Li, C.

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

C. Li, M. Zhang, X. Chen, and Q. Li, “Fluorinated 9,9′-spirobifluorene derivative as host material for highly efficient blue fluorescent OLED,” Opt. Mater. Express 6(8), 2545–2553 (2016).
[Crossref]

Li, F.

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Li, G.

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Li, H.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Li, J.

X. Wang, J. Huang, J. Li, and J. Yu, “Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity,” J. Phys. D Appl. Phys. 49(7), 075102 (2016).
[Crossref]

Li, Q.

C. Li, M. Zhang, X. Chen, and Q. Li, “Fluorinated 9,9′-spirobifluorene derivative as host material for highly efficient blue fluorescent OLED,” Opt. Mater. Express 6(8), 2545–2553 (2016).
[Crossref]

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

Li, Z.

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

Liang, C.

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

Lien, A.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Lin, H. W.

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

Lin, Y.

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

Lin, Y. T.

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Liu, B.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Liu, S.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Liu, T.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Liu, Y.

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Lo, C. C.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Lu, Z.

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Luo, D.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Luo, J.

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Luo, Y.

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

Lüssem, B.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Ma, C.

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Ma, D.

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

D. Yang and D. Ma, “1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2054–2060 (2013).
[Crossref]

Moon, J. S.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Mu, Y.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Narasimhan, K. L.

F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, “Electronic transport in doped pyrenyl carbazole,” J. Phys. Chem. C 110(4), 044507 (2011).

Nie, H.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Nilsson, B.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Ning, H.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Noh, H. Y.

Nomura, H.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Omary, M. A.

U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
[Crossref]

Oswald, I. W. H.

U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
[Crossref]

Pang, H.

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

Patankar, M. P.

F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, “Electronic transport in doped pyrenyl carbazole,” J. Phys. Chem. C 110(4), 044507 (2011).

Peng, J.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Peng, Q.

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

Periasamy, N.

F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, “Electronic transport in doped pyrenyl carbazole,” J. Phys. Chem. C 110(4), 044507 (2011).

Qi, Y.

J. Huang, Y. Qi, H. Wang, and J. Yu, “Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device,” Appl. Phys. Lett. 102(18), 183302 (2013).
[Crossref]

Qin, A.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Qiu, C.

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Qu, B.

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

Reineke, S.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Ryu, B. D.

Sato, K.

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Shieh, C. L.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Shih, P. I.

P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, “A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices,” Adv. Funct. Mater. 17(17), 3514–3520 (2007).
[Crossref]

Shu, C. F.

P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, “A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices,” Adv. Funct. Mater. 17(17), 3514–3520 (2007).
[Crossref]

Song, W.

I. H. Lee, W. Song, and J. Y. Lee, “Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes,” Org. Electron. 29, 22–26 (2016).
[Crossref]

Song, X.

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

Street, R. A.

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Su, H. C.

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

Tanaka, H.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Tang, B. Z.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
[Crossref] [PubMed]

Y. Hong, J. W. Y. Lam, and B. Z. Tang, “Aggregation-induced emission: phenomenon, mechanism and applications,” Chem. Commun. (Camb.) 40(29), 4332–4353 (2009).
[Crossref] [PubMed]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Tao, Y.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Thanh, D. T.

Tong, M.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Wang, E.

E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
[Crossref] [PubMed]

Wang, H.

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

J. Huang, Y. Qi, H. Wang, and J. Yu, “Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device,” Appl. Phys. Lett. 102(18), 183302 (2013).
[Crossref]

Wang, L.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Wang, R.

D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
[Crossref]

Wang, X.

X. Wang, J. Huang, J. Li, and J. Yu, “Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity,” J. Phys. D Appl. Phys. 49(7), 075102 (2016).
[Crossref]

X. Wang, D. Zhou, J. Huang, and J. Yu, “High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter,” Appl. Phys. Lett. 107(4), 043303 (2015).
[Crossref]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Wang, Y.

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Wang, Y. F.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Wei, J.

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

Wong, K. T.

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

Wu, C. C.

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

Wu, F. I.

P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, “A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices,” Adv. Funct. Mater. 17(17), 3514–3520 (2007).
[Crossref]

Wu, Z.

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

Xia, Y.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Xiao, L.

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

Xie, Y.

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

Xie, Z.

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Xu, B.

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Xu, J.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Xu, M.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Xu, P.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Xu, S.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Xu, Z.

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Xue, J.

J. Xue and S. R. Forrest, “Carrier transport in multilayer organic photodetectors: II. Effects of anode preparation,” J. Appl. Phys. 95(4), 1869–1877 (2004).
[Crossref]

Yan, L.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Yang, D.

D. Yang and D. Ma, “1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2054–2060 (2013).
[Crossref]

Yang, M.

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Yang, Y.

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Yoshida, K.

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

You, J.

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Yu, G.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Yu, J.

D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
[Crossref]

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

X. Wang, J. Huang, J. Li, and J. Yu, “Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity,” J. Phys. D Appl. Phys. 49(7), 075102 (2016).
[Crossref]

X. Wang, D. Zhou, J. Huang, and J. Yu, “High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter,” Appl. Phys. Lett. 107(4), 043303 (2015).
[Crossref]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

J. Huang, Y. Qi, H. Wang, and J. Yu, “Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device,” Appl. Phys. Lett. 102(18), 183302 (2013).
[Crossref]

Yuan, K.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Zhan, X.

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Zhang, D.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Zhang, G.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Zhang, J.

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

Zhang, L.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Zhang, M.

Zhang, Q.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Zhang, W.

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

Zhang, X.

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Zhang, Y.

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Zhang, Z.

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

Zhao, E.

E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
[Crossref] [PubMed]

Zhao, R.

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Zhao, S.

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

Zhao, Z.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Zheng, C.

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

Zheng, X.

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

Zhou, D.

D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
[Crossref]

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

X. Wang, D. Zhou, J. Huang, and J. Yu, “High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter,” Appl. Phys. Lett. 107(4), 043303 (2015).
[Crossref]

Zhou, J.

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Zhou, X.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

Zhu, D.

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Zou, J.

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Adv. Funct. Mater. (2)

P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, “A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices,” Adv. Funct. Mater. 17(17), 3514–3520 (2007).
[Crossref]

B. Liu, H. Nie, X. Zhou, S. Hu, D. Luo, D. Gao, J. Zou, M. Xu, L. Wang, Z. Zhao, A. Qin, J. Peng, H. Ning, Y. Cao, and B. Z. Tang, “Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes,” Adv. Funct. Mater. 26(5), 776–783 (2016).
[Crossref]

Adv. Mater. (6)

H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, and C. H. Cheng, “Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices,” Adv. Mater. 24(43), 5867–5871 (2012).
[Crossref] [PubMed]

L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater. 25(46), 6642–6671 (2013).
[Crossref] [PubMed]

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Adv. Mater. 26(47), 7931–7958 (2014).
[Crossref] [PubMed]

H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, “Highly efficient visible-blind organic ultraviolet photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[Crossref]

A. J. Heeger, “25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation,” Adv. Mater. 26(1), 10–27 (2014).
[Crossref] [PubMed]

L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices,” Adv. Mater. 23(8), 926–952 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang, and R. Zhao, “Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al3+ in living cells based on Ion-induced aggregation,” Anal. Chem. 87(3), 1470–1474 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Xu, T. Liu, Y. Mu, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, Y. Zhang, A. Lien, and J. Xu, “An organic molecule with asymmetric structure exhibiting aggregation - induced emission, delayed fluorescence, and mechanoluminescence,” Angew. Chem. Int. Ed. Engl. 54(3), 874–878 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

X. Wang, D. Zhou, J. Huang, and J. Yu, “High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter,” Appl. Phys. Lett. 107(4), 043303 (2015).
[Crossref]

U. S. Bhansali, H. Jia, I. W. H. Oswald, M. A. Omary, and B. E. Gnade, “High efficiency warm-white organic light emitting diodes from a single emitter in graded-doping device architecture,” Appl. Phys. Lett. 100(18), 183305 (2012).
[Crossref]

J. Huang, Y. Qi, H. Wang, and J. Yu, “Low roll off radiation efficiency of charge transfer state excitons based on organic photovoltaic and electroluminescent integrated device,” Appl. Phys. Lett. 102(18), 183302 (2013).
[Crossref]

Chem. Commun. (Camb.) (3)

J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. Yang, Y. Huang, J. Yu, and Z. Lu, “Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion,” Chem. Commun. (Camb.) 50(57), 7586–7589 (2014).
[Crossref] [PubMed]

Y. Hong, J. W. Y. Lam, and B. Z. Tang, “Aggregation-induced emission: phenomenon, mechanism and applications,” Chem. Commun. (Camb.) 40(29), 4332–4353 (2009).
[Crossref] [PubMed]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chem. Commun. (Camb.) 18(18), 1740–1741 (2001).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (1)

X. Zhan, Z. Wu, Y. Lin, Y. Xie, Q. Peng, Q. Li, D. Ma, and Z. Li, “Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect,” Chem. Sci. (Camb.) 7(7), 4355–4363 (2016).
[Crossref]

Chem. Soc. Rev. (1)

Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, “Recent advances in organic mechanofluorochromic materials,” Chem. Soc. Rev. 41(10), 3878–3896 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Xue and S. R. Forrest, “Carrier transport in multilayer organic photodetectors: II. Effects of anode preparation,” J. Appl. Phys. 95(4), 1869–1877 (2004).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam, and B. Z. Tang, “A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae,” J. Mater. Chem. B Mater. Biol. Med. 2(14), 2013–2019 (2014).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

C. Li, J. Wei, J. Han, Z. Li, X. Song, Z. Zhang, J. Zhang, and Y. Wang, “Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 10120–10129 (2016).
[Crossref]

D. Yang and D. Ma, “1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2054–2060 (2013).
[Crossref]

J. Phys. Chem. C (1)

F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, “Electronic transport in doped pyrenyl carbazole,” J. Phys. Chem. C 110(4), 044507 (2011).

J. Phys. D Appl. Phys. (1)

X. Wang, J. Huang, J. Li, and J. Yu, “Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity,” J. Phys. D Appl. Phys. 49(7), 075102 (2016).
[Crossref]

Nat. Photonics (2)

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Nature (1)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (3)

Org. Electron. (2)

D. Zhou, R. Wang, H. Guo, J. Huang, and J. Yu, “Study of exciton adjusting layer on electroluminescent and ultraviolet detective properties of organic optoelectronic integrated device,” Org. Electron. 41, 355–361 (2017).
[Crossref]

I. H. Lee, W. Song, and J. Y. Lee, “Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes,” Org. Electron. 29, 22–26 (2016).
[Crossref]

Science (1)

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Synth. Met. (2)

W. Zhang, C. Liang, Z. He, H. Pang, Y. Wang, and S. Zhao, “Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes,” Synth. Met. 210, 214–222 (2015).
[Crossref]

D. Zhou, X. Zheng, H. Wang, J. Huang, Y. Luo, J. Zhou, J. Yu, and Z. Lu, “Enhancement of both electroluminescent and ultraviolet detective properties in organic optoelectronic integrated device realized by two triplet-triplet annihilation materials,” Synth. Met. 220, 323–328 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic energy level diagram of OIDs and chemical structures of TPE and 4CzIPN.

Fig. 2
Fig. 2

(a) Absorption spectra of pristine TPE, 4CzIPN and TPE: 4CzIPN films. (b) EL and PL spectra of 4CzIPN doped and non-doped devices. (c) EL spectra of OIDs with 4CzIPN doping concentrations ranged from 0% to 25%. (d) J-V-L characteristics of the OIDs with 4CzIPN doping concentrations ranged from 0% to 25%.

Fig. 3
Fig. 3

(a) J-CE (b) J-PE (c) L-CE (d) L-PE characteristics of OIDs with stepped dopant concentrations ranged from 0 wt% to 25 wt%.

Fig. 4
Fig. 4

(a) Current density-voltage characteristics of OIDs in dark with stepped dopant concentrations from 5 wt% to 25 wt%. (b) Current density-voltage characteristics of OIDs under UV light with stepped dopant concentrations from 5 wt% to 25 wt%. (c) UV detectivity of the OIDs as a function of reverse bias with stepped dopant concentrations from 5 wt% to 25 wt%. (d) Ion/Ioff versus bias of OIDs with stepped dopant concentrations from 5 wt% to 25 wt%.

Fig. 5
Fig. 5

Section energy distribution simulation of (a) non-doped (b) 5% (c) 10% (d) 15% (e) 20% (f) 25% doping concentration.

Tables (2)

Tables Icon

Table 1 EL property of OIDs with different doping concentrations

Tables Icon

Table 2 UV detective property of OIDs with different doping concentrations (photocurrent measured at −0.5 V, 0.9 mW/cm2 365 nm UV light)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

h v UV + M TPE M * TPE
h v UV + M 4CzIPN M * 4CzIPN
M * TPE h + + e
M * 4CzIPN   h + + e
D*=R/ (2q J dark ) 1/2 =( J light J dark /P)/ (2q J dark ) 1/2

Metrics