Abstract

The rare earth ions doped up-converting inverse opals exhibited application potential in the fields of biosensors and optic–electronic devices. However, there are two major factors which have limited their applications. One is the parity forbidden characters of 4f-f transitions of rare earth ions. Another factor is their low upconversion luminescence efficiency caused by the surface defects. In the present work, the SiO2 shell was coated on the skeleton surface of YbPO4:Er3+ inverse opals to protect the luminescent ions, and about a 10-fold enhancement of upconversion luminescence was obtained. Additionally, the localized surface plasmon resonance from Ag nanoparticles was used to enhance the upconversion luminescence of SiO2 coated YbPO4:Er3+ inverse opals. The green and red upconversion luminescence of inverse opal was enhanced selectively. Finally, the green and red upconversion luminescence are enhanced by about 50 and 30 folds by coupling effect of SiO2 coating and Ag nanoparticles, respectively. The selective enhancement mechanism of upconversion luminescence was investigated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals

Zhengwen Yang, Kan Zhu, Zhiguo Song, Dacheng Zhou, Zhaoyi Yin, and Jianbei Qiu
Appl. Opt. 50(3) 287-290 (2011)

Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission

Yi Qin, Zhiliang Dong, Dacheng Zhou, Yong Yang, Xuhui Xu, and Jianbei Qiu
Opt. Mater. Express 6(6) 1942-1955 (2016)

Investigation of upconversion and near infrared emission properties in CeO2: Er3+, Yb3+ inverse opals

Hangjun Wu, Zhengwen Yang, Jiayan Liao, Shenfeng Lai, Jianbei Qiu, Zhiguo Song, Yong Yang, Dacheng Zhou, and Zhaoyi Yin
Opt. Express 21(19) 22186-22193 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
    [Crossref] [PubMed]
  2. L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
    [Crossref] [PubMed]
  3. H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
    [Crossref]
  4. M. Mousavi, H. Söderlund, H. Liu, and S. Andersson-Engels, “Improving penetration depth in biological imaging using Nd3+/Yb3+/Er3+-doped Upconverting Nanoparticles,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2016), OTu2C. 5.
  5. G. I. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
    [Crossref]
  6. S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
    [Crossref] [PubMed]
  7. Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
    [Crossref] [PubMed]
  8. L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [Crossref]
  9. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36(20), 3990–3992 (2011).
    [Crossref] [PubMed]
  10. G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
    [Crossref]
  11. D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
    [Crossref] [PubMed]
  12. W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
    [Crossref]
  13. K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
    [Crossref] [PubMed]
  14. Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
    [Crossref]
  15. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  16. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  17. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
    [Crossref]
  18. Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
    [Crossref] [PubMed]
  19. Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
    [Crossref]
  20. P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
    [Crossref] [PubMed]
  21. Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
    [Crossref]
  22. Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4: Nd/Yb/Ho@ SiO2@ Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942–1955 (2016).
    [Crossref]
  23. Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
    [Crossref] [PubMed]
  24. J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
    [Crossref]
  25. J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
    [Crossref]
  26. I. Botev, “A new conception of Bouguer-Lambert-Beer’s law,” Fresenius Z. Anal. Chem. 297(5), 419 (1979).
    [Crossref]
  27. S. C. Yang, C. Tang, S. Dong, and P. J. Li, “Determination of cyanide on surface plasma resonance spectrum of silver nanoparticles,” Anal. Lab. 1, 018 (2005).
  28. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
    [Crossref] [PubMed]
  29. Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
    [Crossref] [PubMed]
  30. A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
    [Crossref]
  31. R. Meltzer, S. Feofilov, B. Tissue, and H. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012 (1999).
    [Crossref]
  32. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
    [Crossref] [PubMed]
  33. K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au-ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett. 95(6), 063103 (2009).
    [Crossref]
  34. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
    [Crossref] [PubMed]
  35. A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
    [Crossref]

2016 (9)

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4: Nd/Yb/Ho@ SiO2@ Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942–1955 (2016).
[Crossref]

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

2015 (3)

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

2014 (4)

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
[Crossref]

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

2011 (3)

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36(20), 3990–3992 (2011).
[Crossref] [PubMed]

2009 (3)

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au-ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett. 95(6), 063103 (2009).
[Crossref]

2008 (3)

Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref] [PubMed]

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

2007 (2)

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

G. I. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

2005 (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

2002 (1)

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

1999 (1)

R. Meltzer, S. Feofilov, B. Tissue, and H. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012 (1999).
[Crossref]

1993 (1)

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

1980 (1)

A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
[Crossref]

1979 (1)

I. Botev, “A new conception of Bouguer-Lambert-Beer’s law,” Fresenius Z. Anal. Chem. 297(5), 419 (1979).
[Crossref]

Armellini, C.

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

Battisha, I. K.

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

Bednarkiewicz, A.

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

Botev, I.

I. Botev, “A new conception of Bouguer-Lambert-Beer’s law,” Fresenius Z. Anal. Chem. 297(5), 419 (1979).
[Crossref]

Brolo, A. G.

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Campion, A.

A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
[Crossref]

Cao, L.

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Care, A.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Chan, M.-H.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Chan, Y.-C.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Chand, R.

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Chase, L.

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Chen, C.-H.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Chen, C.-W.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Chen, X.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Chiappini, A.

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

Chow, G.-M.

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

Cichy, B.

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Conibeer, G. J.

Cui, S.

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

D’Auria, S.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Dong, B.

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Dong, J.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Dong, Z.

Du, Y.

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Fang, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Feng, S.

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Feng, W.

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Feofilov, S.

R. Meltzer, S. Feofilov, B. Tissue, and H. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012 (1999).
[Crossref]

Ferrari, M.

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

Gaihre, Y. R.

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Gallo, A.

A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
[Crossref]

Gao, W.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

Gnach, A.

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Gray, S. K.

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

Gryczynski, I.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Guo, F.

Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Haldar, K. K.

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au-ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett. 95(6), 063103 (2009).
[Crossref]

Hamajima, H.

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Han, Q.

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Harris, C.

A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
[Crossref]

He, E.

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Hsiao, M.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Huang, K.

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Huang, S.

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Jiang, D.

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Jiang, T.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Jo, J.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Johnson, C. M.

Kim, D.-Y.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Kim, S.-S.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Lee, I.-J.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Li, A.

Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref] [PubMed]

Li, G.

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

Li, J.

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
[Crossref]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Li, Z.

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Liang, L.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Liu, M.

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Liu, N.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Liu, R.-S.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Liu, W.

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Liu, X.

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

Long, J.

W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
[Crossref]

Lu, C.

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Lu, Y.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Lü, Q.

Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref] [PubMed]

Luitel, H. N.

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Lukowiak, A.

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

Malicka, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Marks, L. D.

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

McMahon, J. M.

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

Meltzer, R.

R. Meltzer, S. Feofilov, B. Tissue, and H. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012 (1999).
[Crossref]

Mishra, A.

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Misiak, M.

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Na, S.-I.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Nah, Y.-C.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Packer, N. H.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Patra, A.

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au-ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett. 95(6), 063103 (2009).
[Crossref]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Prorok, K.

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

Qian, Y.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Qin, G.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Qin, W.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Qin, Y.

Qiu, J.

Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4: Nd/Yb/Ho@ SiO2@ Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942–1955 (2016).
[Crossref]

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

Qiu, K.

W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
[Crossref]

Qu, H.

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Reece, P. J.

Ren, Z.

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

Righini, G. C.

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

Robota, H.

A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
[Crossref]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Salcedo, W. J.

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Schatz, G. C.

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

Shao, B.

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

Shao, J.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Shen, Y.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Sherry, L. J.

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

Shingae, T.

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Sobczyk, M.

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

Song, H.

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Song, Z.

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

Strek, W.

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

Su, G.

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Sun, L.

Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref] [PubMed]

Sun, Y.

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Sun, Z.

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Sunna, A.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Tao, L.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Tissue, B.

R. Meltzer, S. Feofilov, B. Tissue, and H. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012 (1999).
[Crossref]

Tu, D.

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Van Duyne, R. P.

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

Wang, C.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Wang, H.

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Wang, P.

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Wang, R.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Wang, Y.

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

Wang, Z.

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Watari, T.

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Waterhouse, G. I.

G. I. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

Waterland, M. R.

G. I. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

Whitmore, P.

A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
[Crossref]

Wiglusz, R. J.

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

Wu, X.

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Xia, L.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Xu, S.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Xu, W.

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Xu, X.

Yanagita, T.

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

Yang, J.

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

Yang, Y.

Yang, Z.

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

Yi, G.-S.

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

Yin, Z.

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Yuan, H.

R. Meltzer, S. Feofilov, B. Tissue, and H. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012 (1999).
[Crossref]

Yuan, L.

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, J.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Zhang, P.

W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
[Crossref]

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, R.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Zhang, S.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Zhang, T.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Zhang, W.

W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
[Crossref]

Zhang, X.

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Zhang, Y.

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Zhao, D.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Zhao, L.

Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref] [PubMed]

Zheng, H.

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Zhou, D.

Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4: Nd/Yb/Ho@ SiO2@ Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942–1955 (2016).
[Crossref]

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Zhou, P.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Zvyagin, A. V.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8(19), 11945–11953 (2016).
[Crossref] [PubMed]

Anal. Biochem. (1)

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au-ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett. 95(6), 063103 (2009).
[Crossref]

Chem. Commun. (Camb.) (1)

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

Chem. Phys. Lett. (1)

A. Campion, A. Gallo, C. Harris, H. Robota, and P. Whitmore, “Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73(3), 447–450 (1980).
[Crossref]

Chem. Rev. (1)

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Eur. J. Inorg. Chem. (1)

Y. Zhang, W. Feng, K. Huang, L. Yuan, Y. Du, X. Wu, and S. Feng, “Luminescence enhancement of Lu3TaO7: Eu3+@ Lu3TaO7 red‐emitting nanophosphors,” Eur. J. Inorg. Chem. 2015(4), 690–695 (2015).
[Crossref]

Fresenius Z. Anal. Chem. (1)

I. Botev, “A new conception of Bouguer-Lambert-Beer’s law,” Fresenius Z. Anal. Chem. 297(5), 419 (1979).
[Crossref]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Inorg. Chem. (1)

M.-H. Chan, C.-W. Chen, I.-J. Lee, Y.-C. Chan, D. Tu, M. Hsiao, C.-H. Chen, X. Chen, and R.-S. Liu, “Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots,” Inorg. Chem. 55(20), 10267–10277 (2016).
[Crossref] [PubMed]

Integr. Ferroelectr. (1)

W. Zhang, J. Long, P. Zhang, J. Li, and K. Qiu, “Luminescence enhancement of ZnS: Cu nanocrystals by zinc sulfide coating with core/shell sstructure,” Integr. Ferroelectr. 154(1), 110–119 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Li, Z. Yang, B. Shao, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Photoluminescence Enhancement of SiO2‐Coated LaPO4: Eu3+ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles,” J. Am. Ceram. Soc. 99(10), 3330–3335 (2016).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

H. N. Luitel, R. Chand, H. Hamajima, Y. R. Gaihre, T. Shingae, T. Yanagita, and T. Watari, “Highly efficient NIR to NIR upconversion of ZnMoO4: Tm 3+, Yb 3+ phosphors and their application in biological imaging of deep tumors,” J. Mater. Chem. B Mater. Biol. Med. 4(37), 6192–6199 (2016).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Q. Han, Y. Zhang, Z. Ren, Z. Wang, W. Gao, E. He, and H. Zheng, “Ag@SiO2/LaF3:Eu3+ Composite Nanostructure and Its Surface Enhanced Luminescence Effect,” J. Nanosci. Nanotechnol. 16(4), 3759–3762 (2016).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

A. Lukowiak, R. J. Wiglusz, A. Chiappini, C. Armellini, I. K. Battisha, G. C. Righini, and M. Ferrari, “Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film,” J. Non-Cryst. Solids 401, 32–35 (2014).
[Crossref]

J. Phys. Chem. C (1)

J. M. McMahon, Y. Wang, L. J. Sherry, R. P. Van Duyne, L. D. Marks, S. K. Gray, and G. C. Schatz, “Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes,” J. Phys. Chem. C 113(7), 2731–2735 (2009).
[Crossref]

Mater. Res. Bull. (1)

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4: Yb, Er@ SiO2@ Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Nano Lett. (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Nanoscale (2)

K. Prorok, A. Bednarkiewicz, B. Cichy, A. Gnach, M. Misiak, M. Sobczyk, and W. Strek, “The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF 4 core-shell nanoparticles,” Nanoscale 6(3), 1855–1864 (2014).
[Crossref] [PubMed]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, “Synthesis and luminescence properties of core/shell ZnS: Mn/ZnO nanoparticles,” Nanoscale Res. Lett. 4(1), 78–83 (2009).
[Crossref] [PubMed]

Nanotechnology (3)

Y. Zhu, W. Xu, G. Li, S. Cui, X. Liu, and H. Song, “Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb3+, Er3+ nanocrystals based on the porous Ag film,” Nanotechnology 26(14), 145602 (2015).
[Crossref] [PubMed]

Y. Zhu, S. Cui, Y. Wang, M. Liu, C. Lu, A. Mishra, and W. Xu, “Enhanced rare earth photoluminescence in inverse opal photonic crystals and its application for pH sensing,” Nanotechnology 27(40), 405202 (2016).
[Crossref] [PubMed]

Q. Lü, A. Li, F. Guo, L. Sun, and L. Zhao, “The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser,” Nanotechnology 19(20), 205704 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

P. Wang, Z. Li, W. J. Salcedo, Z. Sun, S. Huang, and A. G. Brolo, “Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods,” Phys. Chem. Chem. Phys. 17(24), 16170–16177 (2015).
[Crossref] [PubMed]

Phys. Rev. B (1)

R. Meltzer, S. Feofilov, B. Tissue, and H. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012 (1999).
[Crossref]

Polyhedron (1)

G. I. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

RSC Advances (1)

Z. Yin, X. Zhang, D. Zhou, H. Wang, W. Xu, X. Chen, T. Zhang, and H. Song, “Enhanced upconversion luminescence on the plasmonic architecture of Au–Ag nanocages,” RSC Advances 6(89), 86297–86300 (2016).
[Crossref]

Other (2)

M. Mousavi, H. Söderlund, H. Liu, and S. Andersson-Engels, “Improving penetration depth in biological imaging using Nd3+/Yb3+/Er3+-doped Upconverting Nanoparticles,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2016), OTu2C. 5.

S. C. Yang, C. Tang, S. Dong, and P. J. Li, “Determination of cyanide on surface plasma resonance spectrum of silver nanoparticles,” Anal. Lab. 1, 018 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The preparation process of SiO2 coated YbPO4: Er3+ inverse opals with Ag NPs.

Fig. 2
Fig. 2

The TEM image of Ag NPs (a) and absorption spectra of diluted Ag NPs (b).

Fig. 3
Fig. 3

(a) SEM image of PS opal template; SEM image of original YbPO4:Er3+ inverse opal (b), 0.5M SiO2 coated YbPO4:Er3+ inverse opal (c) and 0.5M SiO2 coated YbPO4:Er3+ inverse opal filled with 4.11 × 10−5M Ag NPs (d).

Fig. 4
Fig. 4

XRD patterns of original YbPO4:Er3+ inverse opal (a), 0.5M SiO2 coated YbPO4:Er3+ inverse opal (b) and 0.5 M SiO2 coated YbPO4:Er3+ inverse opal filled with the 4.11 × 10−5 M Ag NPs (c).

Fig. 5
Fig. 5

Low (a) and high (b) magnification TEM images of SiO2 coated YbPO4:Er3+ inverse opal prepared by 0.5 M SiO2 sol; TEM image (c) and EDS spectrum (d) of 0.5 M SiO2 coated inverse opal filled with the 4.11 × 10−5 M Ag NPs

Fig. 6
Fig. 6

Transmittance spectra of YbPO4:Er3+ inverse opals before (black line) and after (red line) coating with the 0.5 M SiO2; Transmittance spectra of 0.5 M SiO2 coated YbPO4:Er3+ inverse opals after the infiltration of 4.11 × 10−5 M Ag NPs (blue line).

Fig. 7
Fig. 7

(a) UCL spectra of YbPO4:Er3+ inverse opal before (black line) and after (red line) double sintering ; UCL spectra of YbPO4:Er3+ inverse opals before (b, left) and after SiO2 coated inverse opal (c, right); the Log-Log plots of pump power dependence of the UCL in the 0.5 M SiO2 coated inverse opal (d); the mechanism of UCL (e).

Fig. 8
Fig. 8

Decay spectra of 554 (a) and 660 nm (b) UCL of YbPO4:Er3+ inverse opals before and after the SiO2 coating

Fig. 9
Fig. 9

UCL spectra of SiO2 coated YbPO4:Er3+ inverse opals before (a, left) and after (b, right) infiltration of Ag nanoparticles. The pump power dependence of the UCL of SiO2 coated inverse opal with 4.11 × 10−5 M Ag NPs (c)

Fig. 10
Fig. 10

(a) the scheme of FDTD simulation and (b) the electric field intensity simulated by the FDTD solution.

Fig. 11
Fig. 11

(a) the EF image of IO-I, IO-II, IO-III and IO-IV; decay curves of 550nm and 650 nm of 0.5 M SiO2 coated samples before (b) and after (c) the addition of Ag NPs.

Fig. 12
Fig. 12

UCL spectra of YbPO4:Er3+ inverse opal without the SiO2 shell after and before the addition of 4.11 × 10−5 M Ag NPs

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A=log( I 0 I )=log 1 T =kcd.
τ 1 f( ED ) λ 0 2 [ 1 3 ( n eff 2 +2 ) ] 2 n eff
d N y1 dt =Iρ N y0 n 0 E 1 N Y1 n 1 E 2 N Y1 n 4 E 3 N Y1 W r0 N y1 =0
d n 1 dt = n 0 E 1 N Y1 n 1 W r2 n 1 E 2 N Y1 =0
d n 2 dt = n 4 E 3 N Y1 n 2 W 3 n 3 W r1 =0
d n 3 dt = n 1 E 2 N Y1 n 3 W 1 n 3 W 2 n 3 W r1 =0
d n 4 dt = n 1 W r1 n 4 E 3 N y1 =0
n 2 = I 2 ρ 2 N y0 2 W r1 E 2 4 E 1 n 0 W 3 W r2 ( W 1 + W 2 ) + Iρ N y0 2 ( W 1 + W 2 + W 3 ) 2 W 3 ( W 1 + W 2 ) + n 0 W r2 E 1 E 2 W 3 I 2 +I
n 3 = I 2 ρ 2 N y0 2 E 2 2 E 1 n 0 W r2 ( W 1 + W 2 ) + Iρ N y0 W 1 + W 2 I 2 +I
η= A r ( A r + A nr )
τ= 1 ( A r + A nr )