Abstract

The nonlinear refractive index for 10 types of recently developed new soft glasses was measured under the same conditions using a pulsed Nd:YAG laser operating at 1064 nm with a 35 ps pulse duration. The study included various types of oxide-based soft glasses commonly used for nonlinear fiber optics, such as lead silicate, borosilicate, phosphatate, tellurite and heavy metal oxide glasses. All studied glasses have good rheological properties, and are suitable for further multi-step thermal processing, including fabrication of nonlinear photonic crystal fibers. As reference samples, standard fused silica glass and commercially available lead silicate glasses were used. The standard Z-scan setup was employed, with both “open-” and “closed-aperture” types of measurement. We show that nonlinearities of some benchmarked thermally stable heavy metal oxide glasses are comparable to more expensive and very fragile chalcogenide glasses.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Sontakke, K. Biswas, A. Tarafder, R. Sen, and K. Annapurna, “Broadband Er3+ emission in highly nonlinear Bismuth modified Zinc-Borate glasses,” Opt. Mater. Express 1(3), 344–356 (2011).
    [Crossref]
  2. R. Stępień, D. Pysz, I. Kujawa, and R. Buczyński, “Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements,” Opt. Mater. 35(8), 1587–1594 (2013).
    [Crossref]
  3. R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
    [Crossref]
  4. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
    [Crossref]
  5. P. Toupin, L. Brilland, G. Renversez, and J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
    [Crossref] [PubMed]
  6. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  7. J. M. Parker, “Fluoride Glasses,” Annu. Rev. Mater. Sci. 19(1), 21–41 (1989).
    [Crossref]
  8. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
    [Crossref] [PubMed]
  9. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  10. T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12(7), 1377–1382 (2004).
    [Crossref] [PubMed]
  11. L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express 24(12), 12600–12606 (2016).
    [Crossref] [PubMed]
  12. A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2), 227–234 (2003).
    [Crossref]
  13. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref] [PubMed]
  14. G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
    [Crossref]
  15. E. Yousef, M. Hotzel, and C. Russel, “Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses,” J. Non-Cryst. Solids 353(4), 333–338 (2007).
    [Crossref]
  16. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref] [PubMed]
  17. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  18. M. Grehn, T. Seuthe, W. Tsai, M. Höfner, A. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express 3(12), 2132–2140 (2013).
    [Crossref]
  19. S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23(12), 2089–2094 (1987).
    [Crossref]
  20. R. Bala, A. Agrawal, S. Sanghi, and N. Singh, “Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses,” Opt. Mater. 36(2), 352–356 (2013).
    [Crossref]
  21. X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
    [Crossref]
  22. S. Manning, H. Ebendorff-Heidepreim, and T. M. Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2(2), 140–152 (2012).
    [Crossref]
  23. R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
    [Crossref] [PubMed]
  24. J. E. Aber, M. C. Newstein, and B. A. Garetz, “Femtosecond optical Kerr effect measurements in silicate glasses,” J. Opt. Soc. Am. B 17(1), 120–127 (2000).
    [Crossref]
  25. J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
    [Crossref]
  26. M. Boivin, M. El-Amraoui, S. Poliquin, R. Vallée, and Y. Messaddeq, “Advances in methods of purification and dispersion measurement applicable to tellurite-based glasses,” Opt. Mater. Express 6(4), 1079–1086 (2016).
    [Crossref]
  27. S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, “Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solution,” J. Phys. At. Mol. Opt. Phys. 28(20), 4537–4554 (1995).
    [Crossref]
  28. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
    [Crossref]
  29. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
    [Crossref]
  30. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).
  31. D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
    [Crossref]
  32. M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
    [Crossref] [PubMed]
  33. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
    [Crossref]
  34. M. J. Moran, C. She, and R. L. Carman, “Interferometric Measurements of the Nonlinear Refractive-Index Coefficient Relative to CS in Laser-System-Related Materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
    [Crossref]
  35. F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
    [Crossref] [PubMed]

2016 (6)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express 24(12), 12600–12606 (2016).
[Crossref] [PubMed]

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

M. Boivin, M. El-Amraoui, S. Poliquin, R. Vallée, and Y. Messaddeq, “Advances in methods of purification and dispersion measurement applicable to tellurite-based glasses,” Opt. Mater. Express 6(4), 1079–1086 (2016).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
[Crossref] [PubMed]

2015 (3)

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref] [PubMed]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

2014 (3)

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

2013 (5)

M. Grehn, T. Seuthe, W. Tsai, M. Höfner, A. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express 3(12), 2132–2140 (2013).
[Crossref]

R. Bala, A. Agrawal, S. Sanghi, and N. Singh, “Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses,” Opt. Mater. 36(2), 352–356 (2013).
[Crossref]

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

P. Toupin, L. Brilland, G. Renversez, and J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
[Crossref] [PubMed]

R. Stępień, D. Pysz, I. Kujawa, and R. Buczyński, “Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements,” Opt. Mater. 35(8), 1587–1594 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

2008 (2)

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref] [PubMed]

2007 (1)

E. Yousef, M. Hotzel, and C. Russel, “Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses,” J. Non-Cryst. Solids 353(4), 333–338 (2007).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2), 227–234 (2003).
[Crossref]

2000 (2)

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

J. E. Aber, M. C. Newstein, and B. A. Garetz, “Femtosecond optical Kerr effect measurements in silicate glasses,” J. Opt. Soc. Am. B 17(1), 120–127 (2000).
[Crossref]

1995 (1)

S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, “Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solution,” J. Phys. At. Mol. Opt. Phys. 28(20), 4537–4554 (1995).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1989 (1)

J. M. Parker, “Fluoride Glasses,” Annu. Rev. Mater. Sci. 19(1), 21–41 (1989).
[Crossref]

1987 (2)

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23(12), 2089–2094 (1987).
[Crossref]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
[Crossref]

1975 (1)

M. J. Moran, C. She, and R. L. Carman, “Interferometric Measurements of the Nonlinear Refractive-Index Coefficient Relative to CS in Laser-System-Related Materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[Crossref]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Aber, J. E.

Abramski, K. M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Achtstein, A.

Adair, R.

Agrawal, A.

R. Bala, A. Agrawal, S. Sanghi, and N. Singh, “Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses,” Opt. Mater. 36(2), 352–356 (2013).
[Crossref]

Akhouayri, H.

Annapurna, K.

Aranyosiova, M.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Bala, R.

R. Bala, A. Agrawal, S. Sanghi, and N. Singh, “Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses,” Opt. Mater. 36(2), 352–356 (2013).
[Crossref]

Barthelemy, A.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Billard, F.

Biswas, K.

Boivin, M.

Bonse, J.

Borzycki, K.

Brilland, L.

P. Toupin, L. Brilland, G. Renversez, and J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
[Crossref] [PubMed]

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

Buczynski, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

R. Stępień, D. Pysz, I. Kujawa, and R. Buczyński, “Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements,” Opt. Mater. 35(8), 1587–1594 (2013).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Bugar, I.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Cable, A.

Calvez, L.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

Camerlingo, A.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Carman, R. L.

M. J. Moran, C. She, and R. L. Carman, “Interferometric Measurements of the Nonlinear Refractive-Index Coefficient Relative to CS in Laser-System-Related Materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[Crossref]

Chase, L. L.

Cimek, J.

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

Cordeiro, C. M. B.

Couderc, V.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Couris, S.

S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, “Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solution,” J. Phys. At. Mol. Opt. Phys. 28(20), 4537–4554 (1995).
[Crossref]

Cronin-Golomb, M.

Domachuk, P.

Ebendorff-Heidepreim, H.

Eberstein, M.

Eichler, H.

El-Amraoui, M.

Fendel, P.

Feng, X.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
[Crossref]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Foy, P.

Franczyk, M.

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

Friberg, S. R.

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23(12), 2089–2094 (1987).
[Crossref]

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Gardner, D.

Garetz, B. A.

George, A. K.

Grehn, M.

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Hagan, D.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Harasny, K.

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

Heidt, A.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2), 227–234 (2003).
[Crossref]

Hewak, D. W.

Höfner, M.

Horak, P.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Hotzel, M.

E. Yousef, M. Hotzel, and C. Russel, “Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses,” J. Non-Cryst. Solids 353(4), 333–338 (2007).
[Crossref]

Hou, J.

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2), 227–234 (2003).
[Crossref]

Jenkins, D.

Jia, Z.

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Jiang, Z.

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Kannan, P.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

Kasztelanic, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

Klimczak, M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

Knight, J. C.

Koudoumas, E.

S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, “Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solution,” J. Phys. At. Mol. Opt. Phys. 28(20), 4537–4554 (1995).
[Crossref]

Kujawa, I.

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

R. Stępień, D. Pysz, I. Kujawa, and R. Buczyński, “Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements,” Opt. Mater. 35(8), 1587–1594 (2013).
[Crossref]

Leach, S.

S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, “Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solution,” J. Phys. At. Mol. Opt. Phys. 28(20), 4537–4554 (1995).
[Crossref]

Liu, D.

Liu, G.

Loh, W. H.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Lorenc, D.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Mairaj, A. K.

Manning, S.

Martynkien, T.

Mermillod-Blondin, A.

Messaddeq, Y.

Monro, T. M.

Moran, M. J.

M. J. Moran, C. She, and R. L. Carman, “Interferometric Measurements of the Nonlinear Refractive-Index Coefficient Relative to CS in Laser-System-Related Materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[Crossref]

Newstein, M. C.

Ohishi, Y.

Olivier, T.

Omenetto, F. G.

Pafchek, R.

Parker, J. M.

J. M. Parker, “Fluoride Glasses,” Annu. Rev. Mater. Sci. 19(1), 21–41 (1989).
[Crossref]

Parmigiani, F.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Payne, S. A.

Petropoulos, P.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Petrovich, M.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Poletti, F.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Poliquin, S.

Ponzo, G. M.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Pysz, D.

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

R. Stępień, D. Pysz, I. Kujawa, and R. Buczyński, “Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements,” Opt. Mater. 35(8), 1587–1594 (2013).
[Crossref]

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Qin, G.

Qin, W.

Quemard, C.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Radzewicz, C.

Renversez, G.

Richardson, D. J.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Russel, C.

E. Yousef, M. Hotzel, and C. Russel, “Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses,” J. Non-Cryst. Solids 353(4), 333–338 (2007).
[Crossref]

Russell, P. St. J.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Ruth, A. A.

S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, “Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solution,” J. Phys. At. Mol. Opt. Phys. 28(20), 4537–4554 (1995).
[Crossref]

Saad, M.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Salem, R.

Salski, B.

Sanghi, S.

R. Bala, A. Agrawal, S. Sanghi, and N. Singh, “Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses,” Opt. Mater. 36(2), 352–356 (2013).
[Crossref]

Segura, M.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

Sen, R.

Seuthe, T.

She, C.

M. J. Moran, C. She, and R. L. Carman, “Interferometric Measurements of the Nonlinear Refractive-Index Coefficient Relative to CS in Laser-System-Related Materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shi, J.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Singh, N.

R. Bala, A. Agrawal, S. Sanghi, and N. Singh, “Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses,” Opt. Mater. 36(2), 352–356 (2013).
[Crossref]

Siwicki, B.

Skibinski, P.

Smektala, F.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Smith, P. W.

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23(12), 2089–2094 (1987).
[Crossref]

Sobon, G.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Sontakke, A. D.

St?pien, R.

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

Stepien, R.

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

R. Stępień, D. Pysz, I. Kujawa, and R. Buczyński, “Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements,” Opt. Mater. 35(8), 1587–1594 (2013).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Stepniewski, G.

Taghizadeh, M. R.

G. Stępniewski, I. Kujawa, M. Klimczak, T. Martynkien, R. Kasztelanic, K. Borzycki, D. Pysz, A. Waddie, B. Salski, R. Stępień, M. R. Taghizadeh, and R. Buczyński, “Artificially anisotropic core fiber with ultra-flat high birefringence profile,” Opt. Mater. Express 6(5), 1464–1479 (2016).
[Crossref]

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

Tarafder, A.

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Toupin, P.

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Troles, J.

Tsai, W.

Vallée, R.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Velic, D.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Vincze, A.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Waddie, A.

Waddie, A. J.

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

Wang, A.

Wang, F.

Wang, K.

Wang, R.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Wang, S.

Wang, Y. A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

White, N. M.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

Wolchover, N. A.

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Wu, C.

Yang, L.

Yang, Z.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yao, C.

Yao, J.

Yin, K.

Yousef, E.

E. Yousef, M. Hotzel, and C. Russel, “Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses,” J. Non-Cryst. Solids 353(4), 333–338 (2007).
[Crossref]

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express 24(12), 12600–12606 (2016).
[Crossref] [PubMed]

Zhang, X.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

Annu. Rev. Mater. Sci. (1)

J. M. Parker, “Fluoride Glasses,” Annu. Rev. Mater. Sci. 19(1), 21–41 (1989).
[Crossref]

Appl. Phys. B (2)

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2), 227–234 (2003).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Fibers (1)

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, and W. H. Loh, “Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications,” Fibers 1(3), 70–81 (2013).
[Crossref]

IEEE J. Quantum Electron. (3)

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23(12), 2089–2094 (1987).
[Crossref]

M. J. Moran, C. She, and R. L. Carman, “Interferometric Measurements of the Nonlinear Refractive-Index Coefficient Relative to CS in Laser-System-Related Materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. A. Wang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (2)

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

E. Yousef, M. Hotzel, and C. Russel, “Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses,” J. Non-Cryst. Solids 353(4), 333–338 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. At. Mol. Opt. Phys. (1)

S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, “Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solution,” J. Phys. At. Mol. Opt. Phys. 28(20), 4537–4554 (1995).
[Crossref]

Materials (Basel) (1)

R. Stępień, M. Franczyk, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Ytterbium-phosphate glass for microstructured fiber laser,” Materials (Basel) 7(6), 4723–4738 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Opt. Express (6)

T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12(7), 1377–1382 (2004).
[Crossref] [PubMed]

L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express 24(12), 12600–12606 (2016).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref] [PubMed]

P. Toupin, L. Brilland, G. Renversez, and J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
[Crossref] [PubMed]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (2)

R. Bala, A. Agrawal, S. Sanghi, and N. Singh, “Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses,” Opt. Mater. 36(2), 352–356 (2013).
[Crossref]

R. Stępień, D. Pysz, I. Kujawa, and R. Buczyński, “Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements,” Opt. Mater. 35(8), 1587–1594 (2013).
[Crossref]

Opt. Mater. Express (5)

Opt. Quantum Electron. (2)

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

R. Kasztelanic, I. Kujawa, R. Stȩpień, J. Cimek, K. Haraśny, M. Klimczak, A. J. Waddie, M. R. Taghizadeh, and R. Buczyński, “Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology,” Opt. Quantum Electron. 46(4), 541–552 (2014).
[Crossref]

Phys. Status Solidi (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Sci. Rep. (1)

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6(1), 19284 (2016).
[Crossref] [PubMed]

Spec. Fiber Struct. Appl. (1)

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Spec. Fiber Struct. Appl. 16(6), 378–391 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of Z-scan set-up used for measurements of nonlinear refractive index.

Fig. 2
Fig. 2

Transmission of lead bismuth gallium silicate glasses with (PBG81) and without (PBG-08) reduction of hydroxide groups. Measurements performed on 2mm thickness sample.

Fig. 3
Fig. 3

Representative “closed” Z-scans, recorded under 35 ps, 1064 nm laser excitation.

Fig. 4
Fig. 4

The ΔΤp-v parameter versus incident laser energy for some of the glasses, under 35 ps, 1064 nm laser excitation.

Fig. 5
Fig. 5

Transmittance of investigated glasses.

Fig. 6
Fig. 6

Tauc plot of investigated glasses.

Fig. 7
Fig. 7

Relation between linear refractive index n1064 and nonlinear refractive index n2 in different glass types. The value of chalcogenide As2S3 glass is taken from ref [4].

Tables (4)

Tables Icon

Table 1 Compositions of borosilicate and heavy metal oxide glasses [% mol].

Tables Icon

Table 2 Nonlinear parameters of the different glasses as obtained under 35 ps, 1064 nm laser excitation

Tables Icon

Table 3 Determined optical bandgaps of investigated glasses obtained from Tauc plot

Tables Icon

Table 4 Comparison of nonlinear refractive indices reported by different sources.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T= 1 π [ β I 0 L eff ( 1+ z 2 / z 0 2 ) ] + ln[ 1+ β I 0 L eff ( 1+ z 2 / z 0 2 ) exp( t 2 ) ] dt.
γ'= λ α 0 1 e a 0 L Δ Τ pv 0.812π I 0 ( 1S ) 0.25 .
n 2 ( esu )= c n 0 40π γ'( m 2 W ).