Abstract

Chalcogenide glasses (ChGs) are promising materials for nonlinear optical applications due to their elevated third-order optical susceptibility. Nonetheless, oxidation and photorefractive effects make the characterization and processing of this class of materials an intricate process. Employing ultrashort laser pulses, we were able to investigate the optical nonlinearities of As2S3 thin films doped with Ag2S nanocrystals, as well as produce channel waveguides. The results showed that the nonlinear refractive indexes of these films are in the order of 2.3-5.2 x 10−18 m2/W at wavelengths in the range of 775-1600 nm. Such film revealed to be proper for the development of nonlinear optical devices, since we have demonstrated the functionality of an 8.7 mm long waveguide for spectral broadening femtosecond IR pulses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films

Shanshan Song, Janesha Dua, and Craig B. Arnold
Opt. Express 18(6) 5472-5480 (2010)

Single-step synthesis of silver sulfide nanocrystals in arsenic trisulfide

Juliana M. P. Almeida, Chao Lu, Cleber R. Mendonça, and Craig B. Arnold
Opt. Mater. Express 5(8) 1815-1821 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  2. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  3. A. B. Seddon, “Chalcogenide glasses - A review of their preparation, properties and applications.,”. Non-Cryst. Solids 184, 44–50 (1995).
  4. Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
    [Crossref]
  5. Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
    [Crossref]
  6. Y. L. Zha and C. B. Arnold, “Solution-processing of thick chalcogenide-chalcogenide and metal-chalcogenide structures by spin-coating and multilayer lamination,” Opt. Mater. Express 3(2), 309–317 (2013).
    [Crossref]
  7. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
    [Crossref] [PubMed]
  8. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
    [Crossref]
  9. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005).
    [Crossref] [PubMed]
  10. F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
    [Crossref]
  11. J. M. P. Almeida, C. Lu, C. R. Mendonça, and C. B. Arnold, “Single-step synthesis of silver sulfide nanocrystals in arsenic trisulfide,” Opt. Mater. Express 5(8), 1815–1821 (2015).
    [Crossref]
  12. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
    [Crossref] [PubMed]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  14. M. L. Miguez, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Accurate measurement of nonlinear ellipse rotation using a phase-sensitive method,” Opt. Express 22(21), 25530–25538 (2014).
    [Crossref] [PubMed]
  15. J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
    [Crossref]
  16. L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
    [Crossref]
  17. T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  18. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
    [Crossref] [PubMed]
  19. T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
    [Crossref]
  20. K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
    [Crossref]
  21. A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).
  22. B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).
  23. X. Gai, D. Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
    [Crossref] [PubMed]

2015 (1)

2014 (6)

T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

M. L. Miguez, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Accurate measurement of nonlinear ellipse rotation using a phase-sensitive method,” Opt. Express 22(21), 25530–25538 (2014).
[Crossref] [PubMed]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

2013 (1)

2012 (2)

X. Gai, D. Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref] [PubMed]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010 (1)

A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
[Crossref]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

2005 (1)

K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005).
[Crossref] [PubMed]

2004 (2)

A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
[Crossref] [PubMed]

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

1998 (2)

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
[Crossref] [PubMed]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).

1995 (1)

A. B. Seddon, “Chalcogenide glasses - A review of their preparation, properties and applications.,”. Non-Cryst. Solids 184, 44–50 (1995).

1993 (1)

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Almeida, J. M. P.

J. M. P. Almeida, C. Lu, C. R. Mendonça, and C. B. Arnold, “Single-step synthesis of silver sulfide nanocrystals in arsenic trisulfide,” Opt. Mater. Express 5(8), 1815–1821 (2015).
[Crossref]

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Aono, M.

K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005).
[Crossref] [PubMed]

Arnold, C. B.

Arrieta, A.

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

Barbano, E. C.

Birkmire, R.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Camps, E.

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

Cerqua-Richardson, K. A.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Chen, G.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).

Choi, D. Y.

Dai, H.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Danto, S.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Dobson, K. D.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Du, Q. Y.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Escobar-Alarcon, L.

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

Ewen, P. J. S.

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Ferreira, P. H. D.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Gai, X.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Hajto, E.

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Hao, Z. H.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Hasegawa, T.

K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005).
[Crossref] [PubMed]

Hô, N.

Hong, G.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Hu, J.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Hu, J. J.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Joshi, S.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Kar, A. K.

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Koontz, E.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Korzhak, A. V.

A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).

Kosa, T. I.

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Kryukov, A. I.

A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).

Kuchmii, S. Y.

A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).

Lawrence, B.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Lee, M.-W.

A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
[Crossref]

Li, F.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Li, L.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Liang, S.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Lin, H.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Lin, H. T.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Liu, X. L.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Lopez, C.

Lu, C.

Luther-Davies, B.

Madden, S.

Manzani, D.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McKinley, J. M.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Mendonca, C. R.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Mendonça, C. R.

Miguez, M. L.

Milam, D.

Misoguti, L.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).

Moreel, L.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Muhl, S.

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

Musgraves, J. D.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Nakayama, T.

K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005).
[Crossref] [PubMed]

Nan, F.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Napoli, M.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).

Ogbuu, O.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Owen, A. E.

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Rangelrojo, R.

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Ribeiro, S. J. L.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Richardson, K.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
[Crossref] [PubMed]

Richardson, M.

Rivero, C.

Rodil, S.

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

Schulte, A.

Seddon, A. B.

A. B. Seddon, “Chalcogenide glasses - A review of their preparation, properties and applications.,”. Non-Cryst. Solids 184, 44–50 (1995).

Shen, X.

Stroyuk, A. L.

A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).

Terabe, K.

K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005).
[Crossref] [PubMed]

Tubtimtae, A.

A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
[Crossref]

Tung, H.-Y.

A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
[Crossref]

Tunnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).

Vallée, R.

Vigueras-Santiago, E.

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

Villeneuve, A.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

vonAlvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).

Wang, G. J.

A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
[Crossref]

Wang, J. H.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Wang, Q.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Wang, Q. Q.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Wang, R.

Wang, R. P.

Wang, T.

Wei, W. H.

Wherrett, B. S.

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Wu, K.-L.

A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
[Crossref]

Yang, D. J.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Yang, Z.

Yang, Z. Y.

Yu, X. F.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zha, Y. L.

Zhang, D. N.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Zhou, J.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Zhou, L.

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Zilio, S. C.

Zin’chuk, N. N.

A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).

Zou, Y.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Zoubir, A.

ACS Nano (1)

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

F. Nan, S. Liang, J. H. Wang, X. L. Liu, D. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell,” Adv. Opt. Mater. 2(7), 679–686 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Adv. Mater. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. Adv. Mater. 63, 109–115 (1996).

Appl. Surf. Sci. (1)

L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci. 254(1), 412–415 (2007).
[Crossref]

Electrochem. Commun. (1)

A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010).
[Crossref]

J. Appl. Phys. (1)

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonca, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

J. Mol. Catal. A-Chemical (1)

A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. A-Chemical 221, 209–221 (2004).

J. Non-Cryst. Solids (2)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

T. I. Kosa, R. Rangelrojo, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, “Nonlinear-optical properties of silver doped AS2S3,” J. Non-Cryst. Solids 166, 1219–1222 (1993).
[Crossref]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nature (1)

K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005).
[Crossref] [PubMed]

Non-Cryst. Solids (1)

A. B. Seddon, “Chalcogenide glasses - A review of their preparation, properties and applications.,”. Non-Cryst. Solids 184, 44–50 (1995).

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Opt. Mater. Express (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Transmittance spectra of undoped (As2S3) and Ag2S-NCs doped thin films.
Fig. 2
Fig. 2 Spectra of the nonlinear refractive index of As2S3 and As2S3:Ag2S-NCs thin films obtained by nonlinear ellipse rotation (NER). The inset displays the NER curves at 775 nm for both samples on the substrate and the substrate itself (green curve) for comparison.
Fig. 3
Fig. 3 Groove width on the surface of As2S3 and As2S3:Ag2S-NCs thin films as a function of the pulse energy, for scan speed of 10 µs, using an objective lens of NA = 0.65. The solid lines represent the fit obtained with the equation given in the text. The inset shows an AFM image of a groove fabricated on doped film with pulse energy close to Eth.
Fig. 4
Fig. 4 Curved 8.7 mm-long waveguide fabricated on the doped sample through the removal of fs-laser irradiated regions. The inset shows the spectral broadening (output) of a fs-laser at 775 nm (input).

Metrics