Abstract

In this article we disclose a method to fabricate a polarization independent dual frequency liquid crystal (DFLC) Fresnel lens (FL) with relatively high efficiency. The switchable FL is based on a patterned hybrid photo-aligned nematic (HPAN) DFLC cell assembled by one substrate providing the homeotropic anchoring and the other one providing the in-plane patterned alignment, with mutually orthogonal easy axis in the neighboring alignment domains, which has been prepared by means of two-step photo-alignment technique. Due to the electro-optical properties of dual frequency LC, the proposed HPAN DFLC FL, which manifests relatively high diffraction efficiency of 38.5% and low driving voltage, has the possibility of achieving a fast response by alternatively switching between high frequency and low frequency electric fields. Thus, with an excellent rewritable performance leading to the alternative focus/defocus switch, the HPAN DFLC FL would definitely be practical and promising in many modern devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer

X. Q. Wang, F. Fan, T. Du, A. M. W. Tam, Y. Ma, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok
Appl. Opt. 53(10) 2026-2029 (2014)

Electrically tunable lens based on a dual-frequency nematic liquid crystal

Oleg Pishnyak, Susumu Sato, and Oleg D. Lavrentovich
Appl. Opt. 45(19) 4576-4582 (2006)

Electrically/optically tunable photo-aligned hybrid nematic liquid crystal Dammann grating

Xiao-Qian Wang, Abhishek Kumar Srivastava, Fan Fan, Zhi-gang Zheng, Dong Shen, Vladimir Grigorievich Chigrinov, and Hoi-Sing Kwok
Opt. Lett. 41(24) 5668-5671 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D Switchable Display by Fresnel-Type LC Lens,” Disp. Technol. 7(4), 215–219 (2011).
    [Crossref]
  2. C. Dorrer, S. K. H. Wei, P. Leung, M. Vargas, K. Wegman, J. Boulé, Z. Zhao, K. L. Marshall, and S. H. Chen, “High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices,” Opt. Lett. 36(20), 4035–4037 (2011).
    [Crossref] [PubMed]
  3. S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
    [Crossref]
  4. X. Q. Wang, F. Fan, T. Du, A. M. W. Tam, Y. Ma, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer,” Appl. Opt. 53(10), 2026–2029 (2014).
    [Crossref] [PubMed]
  5. X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
    [Crossref] [PubMed]
  6. A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
    [Crossref] [PubMed]
  7. C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically Switchable Fresnel Lens Based on a Liquid Crystal Film with a Polymer Relief Pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
    [Crossref]
  8. Y. Lou, Q. Liu, H. Wang, Y. Shi, and S. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49(26), 4995–5000 (2010).
    [Crossref] [PubMed]
  9. H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50(22), 4295–4301 (2011).
    [Crossref] [PubMed]
  10. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
    [Crossref]
  11. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
    [Crossref] [PubMed]
  12. H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
    [Crossref]
  13. L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [Crossref] [PubMed]
  14. L. C. Lin, K. T. Cheng, C. K. Liu, C. L. Ting, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110 (2008).
    [Crossref]
  15. K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
    [Crossref] [PubMed]
  16. Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
    [Crossref]
  17. C. H. Lin, Y. Y. Wang, and C. W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
    [Crossref] [PubMed]
  18. C. H. Lin, H. Y. Huang, and J. Y. Wang, “Polarization-Independent Liquid-Crystal Fresnel Lenses Based on Surface-Mode Switching of 90°Twisted-Nematic Liquid Crystals,” IEEE Photonics Technol. Lett. 22(3), 137–139 (2010).
    [Crossref]
  19. S. H. Lin, C. Y. Li, C. T. Kuo, and H. C. Yeh, “Fresnel Lenses in 90° Twisted-Nematic Liquid Crystals With Optical and Electrical Controllability,” IEEE Photonics Technol. Lett. 28(13), 1462–1464 (2016).
    [Crossref]
  20. S. H. Lin, B. Y. Huang, C. Y. Li, K. Y. Yu, J. L. Chen, and C. T. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229 (2016).
    [Crossref]
  21. S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000).
    [Crossref]
  22. P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121 (2012).
    [Crossref]
  23. W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597 (2016).
    [Crossref]
  24. Y. Li and D. Luo, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Opt. Mater. Express 6(2), 691 (2016).
    [Crossref]
  25. Y. C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Hybrid anchoring for a color-reflective dual-frequency cholesteric liquid crystal device switched by low voltages,” Opt. Mater. Express 5(11), 2715 (2015).
    [Crossref]
  26. S. Yabu, H. Yoshida, G. Lim, K. Kaneko, Y. Okumura, N. Uehara, H. Kikuchi, and M. Ozaki, “Dual frequency operation of a blue phase liquid crystal,” Opt. Mater. Express 1(8), 1577 (2011).
    [Crossref]
  27. Q. Song, H. Q. Xianyu, S. Gauza, and S. T. Wu, “High Birefringence and Low Crossover Frequency Dual-Frequency Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
    [Crossref]
  28. H. Q. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
    [Crossref]
  29. H. Q. Xianyu, X. Liang, J. Suna, and S. T. Wu, “High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature,” Liq. Cryst. 37(12), 1493–1499 (2010).
    [Crossref]
  30. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [Crossref] [PubMed]
  31. X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37(17), 3627–3629 (2012).
    [Crossref] [PubMed]
  32. S. A. Jewell, T. S. Taphouse, and J. R. Sambles, “Rapid switching in a dual-frequency hybrid aligned nematic liquid crystal cell,” Appl. Phys. Lett. 87(2), 021106 (2005).
    [Crossref]
  33. Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85(16), 3354 (2004).
    [Crossref]
  34. V. Chigrinov, V. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications. (Wiley, England, 2008).
  35. J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
    [Crossref] [PubMed]
  36. J. T. Sun and V. G. Chigrinov, “Effect of Azo Dye Layer on Rewriting Speed of Optical Rewritable E-paper,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 1–7 (2012).
    [Crossref]
  37. L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [Crossref] [PubMed]

2016 (4)

2015 (2)

2014 (1)

2013 (2)

2012 (4)

J. T. Sun and V. G. Chigrinov, “Effect of Azo Dye Layer on Rewriting Speed of Optical Rewritable E-paper,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 1–7 (2012).
[Crossref]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37(17), 3627–3629 (2012).
[Crossref] [PubMed]

P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121 (2012).
[Crossref]

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

2011 (5)

2010 (4)

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

H. Q. Xianyu, X. Liang, J. Suna, and S. T. Wu, “High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature,” Liq. Cryst. 37(12), 1493–1499 (2010).
[Crossref]

C. H. Lin, H. Y. Huang, and J. Y. Wang, “Polarization-Independent Liquid-Crystal Fresnel Lenses Based on Surface-Mode Switching of 90°Twisted-Nematic Liquid Crystals,” IEEE Photonics Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Y. Lou, Q. Liu, H. Wang, Y. Shi, and S. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49(26), 4995–5000 (2010).
[Crossref] [PubMed]

2009 (2)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[Crossref]

H. Q. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

2008 (2)

Q. Song, H. Q. Xianyu, S. Gauza, and S. T. Wu, “High Birefringence and Low Crossover Frequency Dual-Frequency Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

L. C. Lin, K. T. Cheng, C. K. Liu, C. L. Ting, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110 (2008).
[Crossref]

2007 (4)

2006 (1)

2005 (1)

S. A. Jewell, T. S. Taphouse, and J. R. Sambles, “Rapid switching in a dual-frequency hybrid aligned nematic liquid crystal cell,” Appl. Phys. Lett. 87(2), 021106 (2005).
[Crossref]

2004 (1)

Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85(16), 3354 (2004).
[Crossref]

2003 (2)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[Crossref]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
[Crossref] [PubMed]

2000 (1)

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000).
[Crossref]

Boulé, J.

Chen, C.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Chen, J. L.

Chen, P.

Chen, S. H.

Chen, T. A.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Chen, Y.

Cheng, K. T.

L. C. Lin, K. T. Cheng, C. K. Liu, C. L. Ting, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110 (2008).
[Crossref]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[Crossref] [PubMed]

Chigrinov, V.

Chigrinov, V. G.

Cui, H. Q.

Date, M.

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000).
[Crossref]

Dorrer, C.

Du, F.

Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85(16), 3354 (2004).
[Crossref]

Du, T.

Duan, W.

Fan, F.

Fan, Y. H.

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
[Crossref] [PubMed]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[Crossref]

Fuh, A. Y.

Fuh, A. Y. G.

L. C. Lin, K. T. Cheng, C. K. Liu, C. L. Ting, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110 (2008).
[Crossref]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[Crossref] [PubMed]

Gauza, S.

Q. Song, H. Q. Xianyu, S. Gauza, and S. T. Wu, “High Birefringence and Low Crossover Frequency Dual-Frequency Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Ge, S. J.

Gong, S. Q.

Guo, L.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

He, S.

Hsiao, Y. C.

Hsieh, C. W.

Hu, W.

Hu, X. K.

Huang, B. Y.

Huang, H. Y.

C. H. Lin, H. Y. Huang, and J. Y. Wang, “Polarization-Independent Liquid-Crystal Fresnel Lenses Based on Surface-Mode Switching of 90°Twisted-Nematic Liquid Crystals,” IEEE Photonics Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Hwang, S. J.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Jashnsaz, H.

Jau, H. C.

Jeng, S. C.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Jewell, S. A.

S. A. Jewell, T. S. Taphouse, and J. R. Sambles, “Rapid switching in a dual-frequency hybrid aligned nematic liquid crystal cell,” Appl. Phys. Lett. 87(2), 021106 (2005).
[Crossref]

Kaneko, K.

Kang, S. W.

Khabbazi, A.

Kikuchi, H.

Kumar, P.

Kuo, C. T.

S. H. Lin, C. Y. Li, C. T. Kuo, and H. C. Yeh, “Fresnel Lenses in 90° Twisted-Nematic Liquid Crystals With Optical and Electrical Controllability,” IEEE Photonics Technol. Lett. 28(13), 1462–1464 (2016).
[Crossref]

S. H. Lin, B. Y. Huang, C. Y. Li, K. Y. Yu, J. L. Chen, and C. T. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229 (2016).
[Crossref]

Kwok, H. S.

Lavrentovich, O. D.

Lee, C. R.

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically Switchable Fresnel Lens Based on a Liquid Crystal Film with a Polymer Relief Pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

Lee, S. H.

Lee, W.

Leung, P.

Li, A. W.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Li, C. Y.

S. H. Lin, C. Y. Li, C. T. Kuo, and H. C. Yeh, “Fresnel Lenses in 90° Twisted-Nematic Liquid Crystals With Optical and Electrical Controllability,” IEEE Photonics Technol. Lett. 28(13), 1462–1464 (2016).
[Crossref]

S. H. Lin, B. Y. Huang, C. Y. Li, K. Y. Yu, J. L. Chen, and C. T. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229 (2016).
[Crossref]

Li, J. N.

Li, Y.

Y. Li and D. Luo, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Opt. Mater. Express 6(2), 691 (2016).
[Crossref]

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Liang, X.

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597 (2016).
[Crossref]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37(17), 3627–3629 (2012).
[Crossref] [PubMed]

H. Q. Xianyu, X. Liang, J. Suna, and S. T. Wu, “High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature,” Liq. Cryst. 37(12), 1493–1499 (2010).
[Crossref]

Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85(16), 3354 (2004).
[Crossref]

Lim, G.

Lin, C. H.

C. H. Lin, Y. Y. Wang, and C. W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
[Crossref] [PubMed]

C. H. Lin, H. Y. Huang, and J. Y. Wang, “Polarization-Independent Liquid-Crystal Fresnel Lenses Based on Surface-Mode Switching of 90°Twisted-Nematic Liquid Crystals,” IEEE Photonics Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Lin, C.-L.

H. Q. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Lin, K. R.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Lin, L. C.

Lin, S. H.

S. H. Lin, C. Y. Li, C. T. Kuo, and H. C. Yeh, “Fresnel Lenses in 90° Twisted-Nematic Liquid Crystals With Optical and Electrical Controllability,” IEEE Photonics Technol. Lett. 28(13), 1462–1464 (2016).
[Crossref]

S. H. Lin, B. Y. Huang, C. Y. Li, K. Y. Yu, J. L. Chen, and C. T. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229 (2016).
[Crossref]

Lin, T. H.

Lin, X. W.

Liu, C. K.

L. C. Lin, K. T. Cheng, C. K. Liu, C. L. Ting, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110 (2008).
[Crossref]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[Crossref] [PubMed]

Liu, Q.

Lo, K. C.

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically Switchable Fresnel Lens Based on a Liquid Crystal Film with a Polymer Relief Pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

Lou, Y.

Lu, J. G.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D Switchable Display by Fresnel-Type LC Lens,” Disp. Technol. 7(4), 215–219 (2011).
[Crossref]

Lu, Y. Q.

Luo, D.

Ma, Y.

Marshall, K. L.

Mo, T. S.

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically Switchable Fresnel Lens Based on a Liquid Crystal Film with a Polymer Relief Pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

Mohajerani, E.

H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50(22), 4295–4301 (2011).
[Crossref] [PubMed]

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[Crossref]

Moheghi, A.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[Crossref]

Nataj, N. H.

H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50(22), 4295–4301 (2011).
[Crossref] [PubMed]

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[Crossref]

Nemati, H.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[Crossref]

Niu, L. G.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Okumura, Y.

Ozaki, M.

Pishnyak, O.

Rad, M. B.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[Crossref]

Ren, H.

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
[Crossref] [PubMed]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[Crossref]

Sambles, J. R.

S. A. Jewell, T. S. Taphouse, and J. R. Sambles, “Rapid switching in a dual-frequency hybrid aligned nematic liquid crystal cell,” Appl. Phys. Lett. 87(2), 021106 (2005).
[Crossref]

Sato, S.

Shen, D.

Shi, Y.

Shieh, H. P. D.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D Switchable Display by Fresnel-Type LC Lens,” Disp. Technol. 7(4), 215–219 (2011).
[Crossref]

Song, Q.

Q. Song, H. Q. Xianyu, S. Gauza, and S. T. Wu, “High Birefringence and Low Crossover Frequency Dual-Frequency Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Song, Y.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D Switchable Display by Fresnel-Type LC Lens,” Disp. Technol. 7(4), 215–219 (2011).
[Crossref]

Srivastava, A. K.

Sun, J.

Sun, J. T.

J. T. Sun and V. G. Chigrinov, “Effect of Azo Dye Layer on Rewriting Speed of Optical Rewritable E-paper,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 1–7 (2012).
[Crossref]

Sun, X. F.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D Switchable Display by Fresnel-Type LC Lens,” Disp. Technol. 7(4), 215–219 (2011).
[Crossref]

Suna, J.

H. Q. Xianyu, X. Liang, J. Suna, and S. T. Wu, “High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature,” Liq. Cryst. 37(12), 1493–1499 (2010).
[Crossref]

Suyama, S.

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000).
[Crossref]

Takada, H.

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000).
[Crossref]

Tam, A. M. W.

Taphouse, T. S.

S. A. Jewell, T. S. Taphouse, and J. R. Sambles, “Rapid switching in a dual-frequency hybrid aligned nematic liquid crystal cell,” Appl. Phys. Lett. 87(2), 021106 (2005).
[Crossref]

Timofeev, I. V.

Ting, C. L.

L. C. Lin, K. T. Cheng, C. K. Liu, C. L. Ting, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110 (2008).
[Crossref]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[Crossref] [PubMed]

Uehara, N.

Vargas, M.

Wang, H.

Wang, J. Y.

C. H. Lin, H. Y. Huang, and J. Y. Wang, “Polarization-Independent Liquid-Crystal Fresnel Lenses Based on Surface-Mode Switching of 90°Twisted-Nematic Liquid Crystals,” IEEE Photonics Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

Wang, L.

Wang, X.

Wang, X. Q.

Wang, Y. Y.

Wegman, K.

Wei, B. Y.

Wei, S. K. H.

Wu, S. T.

H. Q. Xianyu, X. Liang, J. Suna, and S. T. Wu, “High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature,” Liq. Cryst. 37(12), 1493–1499 (2010).
[Crossref]

Q. Song, H. Q. Xianyu, S. Gauza, and S. T. Wu, “High Birefringence and Low Crossover Frequency Dual-Frequency Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85(16), 3354 (2004).
[Crossref]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
[Crossref] [PubMed]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[Crossref]

Wu, S. Z.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Wu, S.-T.

H. Q. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Wu, Y. H.

Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85(16), 3354 (2004).
[Crossref]

Xianyu, H. Q.

H. Q. Xianyu, X. Liang, J. Suna, and S. T. Wu, “High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature,” Liq. Cryst. 37(12), 1493–1499 (2010).
[Crossref]

H. Q. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Q. Song, H. Q. Xianyu, S. Gauza, and S. T. Wu, “High Birefringence and Low Crossover Frequency Dual-Frequency Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Yabu, S.

Yang, H.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Yeh, H. C.

S. H. Lin, C. Y. Li, C. T. Kuo, and H. C. Yeh, “Fresnel Lenses in 90° Twisted-Nematic Liquid Crystals With Optical and Electrical Controllability,” IEEE Photonics Technol. Lett. 28(13), 1462–1464 (2016).
[Crossref]

Yoshida, H.

Yu, K. Y.

Yu, Y. S.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Zhao, Z.

Zhu, G.

Zyryanov, V. Y.

Appl. Opt. (4)

Appl. Phys. B (1)

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Appl. Phys. Lett. (3)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[Crossref]

S. A. Jewell, T. S. Taphouse, and J. R. Sambles, “Rapid switching in a dual-frequency hybrid aligned nematic liquid crystal cell,” Appl. Phys. Lett. 87(2), 021106 (2005).
[Crossref]

Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85(16), 3354 (2004).
[Crossref]

Disp. Technol. (1)

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D Switchable Display by Fresnel-Type LC Lens,” Disp. Technol. 7(4), 215–219 (2011).
[Crossref]

Europhys. Lett. (1)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. H. Lin, H. Y. Huang, and J. Y. Wang, “Polarization-Independent Liquid-Crystal Fresnel Lenses Based on Surface-Mode Switching of 90°Twisted-Nematic Liquid Crystals,” IEEE Photonics Technol. Lett. 22(3), 137–139 (2010).
[Crossref]

S. H. Lin, C. Y. Li, C. T. Kuo, and H. C. Yeh, “Fresnel Lenses in 90° Twisted-Nematic Liquid Crystals With Optical and Electrical Controllability,” IEEE Photonics Technol. Lett. 28(13), 1462–1464 (2016).
[Crossref]

J. Opt. (1)

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Jpn. J. Appl. Phys. (2)

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically Switchable Fresnel Lens Based on a Liquid Crystal Film with a Polymer Relief Pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[Crossref]

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000).
[Crossref]

Liq. Cryst. (2)

H. Q. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

H. Q. Xianyu, X. Liang, J. Suna, and S. T. Wu, “High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature,” Liq. Cryst. 37(12), 1493–1499 (2010).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

Q. Song, H. Q. Xianyu, S. Gauza, and S. T. Wu, “High Birefringence and Low Crossover Frequency Dual-Frequency Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

J. T. Sun and V. G. Chigrinov, “Effect of Azo Dye Layer on Rewriting Speed of Optical Rewritable E-paper,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 561(1), 1–7 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Opt. Mater. Express (6)

Proc. SPIE (1)

L. C. Lin, K. T. Cheng, C. K. Liu, C. L. Ting, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110 (2008).
[Crossref]

Other (1)

V. Chigrinov, V. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications. (Wiley, England, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Configuration, fabrication and testing setup of the proposed HPAN DFLC FL. (A) Configuration of HPAN DFLC FL cell. The molecules under the white regions (odd zones) and the black regions (even zones) orient in the y-o-z plane and the x-o-z plane, respectively. The zoomed area in the blue dotted square shows the easy axis distribution in two different alignment domains and that in the blue dotted circle shows the homeotropic alignment of the LC molecules. (B) Mechanism of the photo-alignment of SD1. The yellow dashed double arrow along the long molecular axis represents the absorption oscillator of the SD1 molecule, and the molecule tends to reorient so as to make the azimuthal angle θ between the polarization plane of the UV light and the absorption oscillator approach 90° under the exposing energy dose of 5J/cm2. (C) Patterned photo-alignment process with a photo-mask and a polarized writing beam. (D) The experimental setup for measuring the electro-optical properties of the HPAN DFLC FL cell. The wavelength of the probe beam is 632.8nm.
Fig. 2
Fig. 2 Micrographs of the HPAN DFLC FLs under the POM. (A) The micrograph of the HPAN DFLC FL with the designed focal length of 4.4cm and (B) the micrograph of the rewritten one with the designed focal length of 13.2cm.
Fig. 3
Fig. 3 (A) The voltage dependent intensities at 1kHz (low frequency) and 40kHz (high frequency); (B) Polarization-independent performances of HPAN DFLC FL as a 40kHz voltage was applied. The white double arrows indicate the polarization of the incident light.
Fig. 4
Fig. 4 Electro-optical response of the HPAN DFLC FL by applying a 6Vrms voltage with alternate frequencies of 1kHz and 40kHz.

Metrics