Abstract

We present a new type of hydrogel photonic crystal with a stop band that can be rapidly modulated across the entire visible spectrum. We make these materials by using a high-molecular-weight polymer to induce a depletion attraction between polystyrene-poly(N-isopropylacrylamide-co-bisacrylamide-co-acrylic acid) core-shell particles. The resulting crystals display a stop band at visible wavelengths that can be tuned with temperature at a rate of 60 nm/s, nearly three orders of magnitude faster than previous photonic-crystal hydrogels. Above a critical concentration of depleting agent, the crystals do not melt even at 40 degrees Celsius. As a result, the stop band can be modulated continuously from red (650 nm) to blue (450 nm), with nearly constant reflectivity throughout the visible spectrum. The unusual thermal stability is due to the polymer used as the depleting agent, which is too large to enter the hydrogel mesh and therefore induces a large osmotic pressure that holds the particles together. The fast response rate is due to the collective diffusion coefficient of our hydrogel shells, which is more than three orders of magnitude larger than that of conventional bulk hydrogels. Finally, the constant reflectivity from red (650 nm) to blue (450 nm) is due to the core-shell design of the particles, whose scattering is dominated by the polystyrene cores and not the hydrogel. These findings provide new insights into the design of responsive photonic crystals for display applications and tunable lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Opals infiltrated with a stimuli-responsive hydrogel for ethanol vapor sensing

Riccardo Pernice, Gabriele Adamo, Salvatore Stivala, Antonino Parisi, Alessandro C. Busacca, Dario Spigolon, Maria Antonietta Sabatino, Leonardo D’Acquisto, and Clelia Dispenza
Opt. Mater. Express 3(11) 1820-1833 (2013)

Disordered packings of core-shell particles with angle-independent structural colors

Sofia Magkiriadou, Jin-Gyu Park, Young-Seok Kim, and Vinothan N. Manoharan
Opt. Mater. Express 2(10) 1343-1352 (2012)

Electric field enhanced photoluminescence of CdTe quantum dots encapsulated in poly (N-isopropylacrylamide) nano-spheres

Brett W. Garner, Tong Cai, Zhibing Hu, and Arup Neogi
Opt. Express 16(24) 19410-19418 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829–832 (1997).
    [Crossref]
  2. M. Ben-Moshe, V. L. Alexeev, and S. A. Asher, “Fast responsive crystalline colloidal array photonic crystal glucose sensors,” Anal. Chem. 78, 5149–5157 (2006).
    [Crossref] [PubMed]
  3. Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
    [Crossref] [PubMed]
  4. T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
    [Crossref] [PubMed]
  5. J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. 50, 1492–1522 (2011).
    [Crossref]
  6. K. I. MacConaghy, C. I. Geary, J. L. Kaar, and M. P. Stoykovich, “Photonic crystal kinase biosensor,” J. Am. Chem. Soc. 136, 6896–6899 (2014).
    [Crossref] [PubMed]
  7. C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic crystals for chemical sensing and biosensing,” Angew. Chem. Int. Ed. 53, 3318–3335 (2014).
    [Crossref]
  8. J. M. Weissman, H. B. Sunkara, S. T. Albert, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959 (1996).
    [Crossref] [PubMed]
  9. X. Xu, A. V. Goponenko, and S. A. Asher, “Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials,” J. Am. Chem. Soc. 130, 3113–3119 (2008).
    [Crossref] [PubMed]
  10. M. M. Ward Muscatello, L. E. Stunja, and S. A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations,” Anal. Chem. 81, 4978–4986 (2009).
    [Crossref]
  11. J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
    [Crossref] [PubMed]
  12. T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70, 1214–1218 (1979).
    [Crossref]
  13. Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92, 1365–1371 (1990).
    [Crossref]
  14. S. Matsukawa and I. Ando, “A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR,” Macromolecules 29, 7136–7140 (1996).
    [Crossref]
  15. T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
    [Crossref] [PubMed]
  16. M. Andersson, A. Axelsson, and G. Zacchi, “Swelling kinetics of poly (N-isopropylacrylamide) gel,” J. Control. Release 50, 273–281 (1998).
    [Crossref] [PubMed]
  17. J. D. Debord and L. A. Lyon, “Thermoresponsive photonic crystals,” J. Phys. Chem. B 104, 6327–6331 (2000).
    [Crossref]
  18. L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
    [Crossref]
  19. M. Chen, L. Zhou, Y. Guan, and Y. Zhang, “Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates,” Angew. Chem. Int. Ed. 52, 9961–9965 (2013).
    [Crossref]
  20. Y. Takeoka and M. Watanabe, “Polymer gels that memorize structures of mesoscopically sized templates. Dynamic and optical nature of periodic ordered mesoporous chemical gels,” Langmuir 18, 5977–5980 (2002).
    [Crossref]
  21. K. Ueno, K. Matsubara, M. Watanabe, and Y. Takeoka, “An electro- and thermochromic hydrogel as a full-color indicator,” Adv. Mater. 19, 2807–2812 (2007).
    [Crossref]
  22. K. Matsubara, M. Watanabe, and Y. Takeoka, “A thermally adjustable multicolor photochromic hydrogel,” Angew. Chem. Int. Ed. 46, 1688–1692 (2007).
    [Crossref]
  23. A. Perro, G. Meng, J. Fung, and V. N. Manoharan, “Design and synthesis of model transparent aqueous colloids with optimal scattering properties,” Langmuir 25, 11295–11298 (2009).
    [Crossref] [PubMed]
  24. S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, “Disordered packings of core-shell particles with angle-independent structural colors,” Opt. Mater. Express 2, 1343–1352 (2012).
    [Crossref]
  25. J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
    [Crossref]
  26. N. Dingenouts, C. Norhausen, and M. Ballauff, “Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering,” Macromolecules 31, 8912–8917 (1998).
    [Crossref]
  27. R. Pelton, “Temperature-sensitive aqueous microgels,” Adv. Colloid Interface Sci. 85, 1–33 (2000).
    [Crossref] [PubMed]
  28. M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-nonsolvency of poly (n-isopropylacrylamide) in deuterated water/ethanol mixtures,” Macromolecules 46, 7894–7901 (2013).
    [Crossref]
  29. X. S. Wu, A. S. Hoffman, and P. Yager, “Synthesis and characterization of thermally reversible macroporous poly (N-isopropylacrylamide) hydrogels,” J. Polym. Sci. A Polym. Chem. 30, 2121–2129 (1992).
    [Crossref]
  30. J. Bibette, D. Roux, and B. Pouligny, “Creaming of emulsions: the role of depletion forces induced by surfactant,” J. Phys. II 2, 401–424 (1992).
  31. S. Asakura and F. Oosawa, “On interaction between two bodies immersed in a solution of macromolecules,” J. Chem. Phys. 22, 1255–1256 (1954).
    [Crossref]

2014 (3)

K. I. MacConaghy, C. I. Geary, J. L. Kaar, and M. P. Stoykovich, “Photonic crystal kinase biosensor,” J. Am. Chem. Soc. 136, 6896–6899 (2014).
[Crossref] [PubMed]

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic crystals for chemical sensing and biosensing,” Angew. Chem. Int. Ed. 53, 3318–3335 (2014).
[Crossref]

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

2013 (2)

M. Chen, L. Zhou, Y. Guan, and Y. Zhang, “Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates,” Angew. Chem. Int. Ed. 52, 9961–9965 (2013).
[Crossref]

M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-nonsolvency of poly (n-isopropylacrylamide) in deuterated water/ethanol mixtures,” Macromolecules 46, 7894–7901 (2013).
[Crossref]

2012 (1)

2011 (2)

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. 50, 1492–1522 (2011).
[Crossref]

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

2010 (1)

T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
[Crossref] [PubMed]

2009 (2)

M. M. Ward Muscatello, L. E. Stunja, and S. A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations,” Anal. Chem. 81, 4978–4986 (2009).
[Crossref]

A. Perro, G. Meng, J. Fung, and V. N. Manoharan, “Design and synthesis of model transparent aqueous colloids with optimal scattering properties,” Langmuir 25, 11295–11298 (2009).
[Crossref] [PubMed]

2008 (1)

X. Xu, A. V. Goponenko, and S. A. Asher, “Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials,” J. Am. Chem. Soc. 130, 3113–3119 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[Crossref] [PubMed]

K. Ueno, K. Matsubara, M. Watanabe, and Y. Takeoka, “An electro- and thermochromic hydrogel as a full-color indicator,” Adv. Mater. 19, 2807–2812 (2007).
[Crossref]

K. Matsubara, M. Watanabe, and Y. Takeoka, “A thermally adjustable multicolor photochromic hydrogel,” Angew. Chem. Int. Ed. 46, 1688–1692 (2007).
[Crossref]

2006 (1)

M. Ben-Moshe, V. L. Alexeev, and S. A. Asher, “Fast responsive crystalline colloidal array photonic crystal glucose sensors,” Anal. Chem. 78, 5149–5157 (2006).
[Crossref] [PubMed]

2004 (1)

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

2002 (1)

Y. Takeoka and M. Watanabe, “Polymer gels that memorize structures of mesoscopically sized templates. Dynamic and optical nature of periodic ordered mesoporous chemical gels,” Langmuir 18, 5977–5980 (2002).
[Crossref]

2000 (2)

R. Pelton, “Temperature-sensitive aqueous microgels,” Adv. Colloid Interface Sci. 85, 1–33 (2000).
[Crossref] [PubMed]

J. D. Debord and L. A. Lyon, “Thermoresponsive photonic crystals,” J. Phys. Chem. B 104, 6327–6331 (2000).
[Crossref]

1998 (2)

M. Andersson, A. Axelsson, and G. Zacchi, “Swelling kinetics of poly (N-isopropylacrylamide) gel,” J. Control. Release 50, 273–281 (1998).
[Crossref] [PubMed]

N. Dingenouts, C. Norhausen, and M. Ballauff, “Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering,” Macromolecules 31, 8912–8917 (1998).
[Crossref]

1997 (1)

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829–832 (1997).
[Crossref]

1996 (2)

J. M. Weissman, H. B. Sunkara, S. T. Albert, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959 (1996).
[Crossref] [PubMed]

S. Matsukawa and I. Ando, “A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR,” Macromolecules 29, 7136–7140 (1996).
[Crossref]

1992 (2)

X. S. Wu, A. S. Hoffman, and P. Yager, “Synthesis and characterization of thermally reversible macroporous poly (N-isopropylacrylamide) hydrogels,” J. Polym. Sci. A Polym. Chem. 30, 2121–2129 (1992).
[Crossref]

J. Bibette, D. Roux, and B. Pouligny, “Creaming of emulsions: the role of depletion forces induced by surfactant,” J. Phys. II 2, 401–424 (1992).

1990 (1)

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92, 1365–1371 (1990).
[Crossref]

1985 (1)

T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
[Crossref] [PubMed]

1979 (1)

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70, 1214–1218 (1979).
[Crossref]

1954 (1)

S. Asakura and F. Oosawa, “On interaction between two bodies immersed in a solution of macromolecules,” J. Chem. Phys. 22, 1255–1256 (1954).
[Crossref]

Albert, S. T.

J. M. Weissman, H. B. Sunkara, S. T. Albert, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959 (1996).
[Crossref] [PubMed]

Alexeev, V. L.

M. Ben-Moshe, V. L. Alexeev, and S. A. Asher, “Fast responsive crystalline colloidal array photonic crystal glucose sensors,” Anal. Chem. 78, 5149–5157 (2006).
[Crossref] [PubMed]

Andersson, M.

M. Andersson, A. Axelsson, and G. Zacchi, “Swelling kinetics of poly (N-isopropylacrylamide) gel,” J. Control. Release 50, 273–281 (1998).
[Crossref] [PubMed]

Ando, I.

S. Matsukawa and I. Ando, “A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR,” Macromolecules 29, 7136–7140 (1996).
[Crossref]

Asakura, S.

S. Asakura and F. Oosawa, “On interaction between two bodies immersed in a solution of macromolecules,” J. Chem. Phys. 22, 1255–1256 (1954).
[Crossref]

Asher, S. A.

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

M. M. Ward Muscatello, L. E. Stunja, and S. A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations,” Anal. Chem. 81, 4978–4986 (2009).
[Crossref]

X. Xu, A. V. Goponenko, and S. A. Asher, “Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials,” J. Am. Chem. Soc. 130, 3113–3119 (2008).
[Crossref] [PubMed]

M. Ben-Moshe, V. L. Alexeev, and S. A. Asher, “Fast responsive crystalline colloidal array photonic crystal glucose sensors,” Anal. Chem. 78, 5149–5157 (2006).
[Crossref] [PubMed]

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829–832 (1997).
[Crossref]

J. M. Weissman, H. B. Sunkara, S. T. Albert, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959 (1996).
[Crossref] [PubMed]

Axelsson, A.

M. Andersson, A. Axelsson, and G. Zacchi, “Swelling kinetics of poly (N-isopropylacrylamide) gel,” J. Control. Release 50, 273–281 (1998).
[Crossref] [PubMed]

Ballauff, M.

N. Dingenouts, C. Norhausen, and M. Ballauff, “Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering,” Macromolecules 31, 8912–8917 (1998).
[Crossref]

Ben-Moshe, M.

M. Ben-Moshe, V. L. Alexeev, and S. A. Asher, “Fast responsive crystalline colloidal array photonic crystal glucose sensors,” Anal. Chem. 78, 5149–5157 (2006).
[Crossref] [PubMed]

Bibette, J.

J. Bibette, D. Roux, and B. Pouligny, “Creaming of emulsions: the role of depletion forces induced by surfactant,” J. Phys. II 2, 401–424 (1992).

Chen, M.

M. Chen, L. Zhou, Y. Guan, and Y. Zhang, “Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates,” Angew. Chem. Int. Ed. 52, 9961–9965 (2013).
[Crossref]

Cheng, H.

M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-nonsolvency of poly (n-isopropylacrylamide) in deuterated water/ethanol mixtures,” Macromolecules 46, 7894–7901 (2013).
[Crossref]

Choi, T. M.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

Debord, J. D.

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

J. D. Debord and L. A. Lyon, “Thermoresponsive photonic crystals,” J. Phys. Chem. B 104, 6327–6331 (2000).
[Crossref]

Debord, S. B.

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

Dingenouts, N.

N. Dingenouts, C. Norhausen, and M. Ballauff, “Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering,” Macromolecules 31, 8912–8917 (1998).
[Crossref]

Fenzl, C.

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic crystals for chemical sensing and biosensing,” Angew. Chem. Int. Ed. 53, 3318–3335 (2014).
[Crossref]

Fillmore, D. J.

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70, 1214–1218 (1979).
[Crossref]

Fung, J.

A. Perro, G. Meng, J. Fung, and V. N. Manoharan, “Design and synthesis of model transparent aqueous colloids with optimal scattering properties,” Langmuir 25, 11295–11298 (2009).
[Crossref] [PubMed]

Ge, J.

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. 50, 1492–1522 (2011).
[Crossref]

Geary, C. I.

K. I. MacConaghy, C. I. Geary, J. L. Kaar, and M. P. Stoykovich, “Photonic crystal kinase biosensor,” J. Am. Chem. Soc. 136, 6896–6899 (2014).
[Crossref] [PubMed]

Goponenko, A. V.

X. Xu, A. V. Goponenko, and S. A. Asher, “Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials,” J. Am. Chem. Soc. 130, 3113–3119 (2008).
[Crossref] [PubMed]

Gorishnyy, T.

Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[Crossref] [PubMed]

Guan, Y.

M. Chen, L. Zhou, Y. Guan, and Y. Zhang, “Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates,” Angew. Chem. Int. Ed. 52, 9961–9965 (2013).
[Crossref]

Hammouda, B.

M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-nonsolvency of poly (n-isopropylacrylamide) in deuterated water/ethanol mixtures,” Macromolecules 46, 7894–7901 (2013).
[Crossref]

Hirokawa, Y.

T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
[Crossref] [PubMed]

Hirotsu, S.

T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
[Crossref] [PubMed]

Hirsch, T.

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic crystals for chemical sensing and biosensing,” Angew. Chem. Int. Ed. 53, 3318–3335 (2014).
[Crossref]

Hoffman, A. S.

X. S. Wu, A. S. Hoffman, and P. Yager, “Synthesis and characterization of thermally reversible macroporous poly (N-isopropylacrylamide) hydrogels,” J. Polym. Sci. A Polym. Chem. 30, 2121–2129 (1992).
[Crossref]

Holtz, J. H.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829–832 (1997).
[Crossref]

Hore, M. J.

M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-nonsolvency of poly (n-isopropylacrylamide) in deuterated water/ethanol mixtures,” Macromolecules 46, 7894–7901 (2013).
[Crossref]

Jones, C. D.

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

Kaar, J. L.

K. I. MacConaghy, C. I. Geary, J. L. Kaar, and M. P. Stoykovich, “Photonic crystal kinase biosensor,” J. Am. Chem. Soc. 136, 6896–6899 (2014).
[Crossref] [PubMed]

Kanai, T.

T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
[Crossref] [PubMed]

Kang, Y.

Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[Crossref] [PubMed]

Kim, S.-H.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

Kim, Y.-S.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, “Disordered packings of core-shell particles with angle-independent structural colors,” Opt. Mater. Express 2, 1343–1352 (2012).
[Crossref]

Kornienko, N.

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

Lee, D.

T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
[Crossref] [PubMed]

Li, Y.

M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-nonsolvency of poly (n-isopropylacrylamide) in deuterated water/ethanol mixtures,” Macromolecules 46, 7894–7901 (2013).
[Crossref]

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92, 1365–1371 (1990).
[Crossref]

Luo, J.

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

Lyon, L. A.

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

J. D. Debord and L. A. Lyon, “Thermoresponsive photonic crystals,” J. Phys. Chem. B 104, 6327–6331 (2000).
[Crossref]

MacConaghy, K. I.

K. I. MacConaghy, C. I. Geary, J. L. Kaar, and M. P. Stoykovich, “Photonic crystal kinase biosensor,” J. Am. Chem. Soc. 136, 6896–6899 (2014).
[Crossref] [PubMed]

Magkiriadou, S.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, “Disordered packings of core-shell particles with angle-independent structural colors,” Opt. Mater. Express 2, 1343–1352 (2012).
[Crossref]

Manoharan, V. N.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, “Disordered packings of core-shell particles with angle-independent structural colors,” Opt. Mater. Express 2, 1343–1352 (2012).
[Crossref]

A. Perro, G. Meng, J. Fung, and V. N. Manoharan, “Design and synthesis of model transparent aqueous colloids with optimal scattering properties,” Langmuir 25, 11295–11298 (2009).
[Crossref] [PubMed]

Matsubara, K.

K. Ueno, K. Matsubara, M. Watanabe, and Y. Takeoka, “An electro- and thermochromic hydrogel as a full-color indicator,” Adv. Mater. 19, 2807–2812 (2007).
[Crossref]

K. Matsubara, M. Watanabe, and Y. Takeoka, “A thermally adjustable multicolor photochromic hydrogel,” Angew. Chem. Int. Ed. 46, 1688–1692 (2007).
[Crossref]

Matsukawa, S.

S. Matsukawa and I. Ando, “A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR,” Macromolecules 29, 7136–7140 (1996).
[Crossref]

McGrath, J. G.

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

Meng, G.

A. Perro, G. Meng, J. Fung, and V. N. Manoharan, “Design and synthesis of model transparent aqueous colloids with optimal scattering properties,” Langmuir 25, 11295–11298 (2009).
[Crossref] [PubMed]

Norhausen, C.

N. Dingenouts, C. Norhausen, and M. Ballauff, “Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering,” Macromolecules 31, 8912–8917 (1998).
[Crossref]

Oosawa, F.

S. Asakura and F. Oosawa, “On interaction between two bodies immersed in a solution of macromolecules,” J. Chem. Phys. 22, 1255–1256 (1954).
[Crossref]

Park, J.-G.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, “Disordered packings of core-shell particles with angle-independent structural colors,” Opt. Mater. Express 2, 1343–1352 (2012).
[Crossref]

Peetermans, J.

T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
[Crossref] [PubMed]

Pelton, R.

R. Pelton, “Temperature-sensitive aqueous microgels,” Adv. Colloid Interface Sci. 85, 1–33 (2000).
[Crossref] [PubMed]

Perro, A.

A. Perro, G. Meng, J. Fung, and V. N. Manoharan, “Design and synthesis of model transparent aqueous colloids with optimal scattering properties,” Langmuir 25, 11295–11298 (2009).
[Crossref] [PubMed]

Pouligny, B.

J. Bibette, D. Roux, and B. Pouligny, “Creaming of emulsions: the role of depletion forces induced by surfactant,” J. Phys. II 2, 401–424 (1992).

Roux, D.

J. Bibette, D. Roux, and B. Pouligny, “Creaming of emulsions: the role of depletion forces induced by surfactant,” J. Phys. II 2, 401–424 (1992).

Sato, E.

T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
[Crossref] [PubMed]

Serpe, M. J.

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

Shah, R. K.

T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
[Crossref] [PubMed]

Shum, H. C.

T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
[Crossref] [PubMed]

Stoykovich, M. P.

K. I. MacConaghy, C. I. Geary, J. L. Kaar, and M. P. Stoykovich, “Photonic crystal kinase biosensor,” J. Am. Chem. Soc. 136, 6896–6899 (2014).
[Crossref] [PubMed]

Stunja, L. E.

M. M. Ward Muscatello, L. E. Stunja, and S. A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations,” Anal. Chem. 81, 4978–4986 (2009).
[Crossref]

Sunkara, H. B.

J. M. Weissman, H. B. Sunkara, S. T. Albert, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959 (1996).
[Crossref] [PubMed]

Takeoka, Y.

K. Ueno, K. Matsubara, M. Watanabe, and Y. Takeoka, “An electro- and thermochromic hydrogel as a full-color indicator,” Adv. Mater. 19, 2807–2812 (2007).
[Crossref]

K. Matsubara, M. Watanabe, and Y. Takeoka, “A thermally adjustable multicolor photochromic hydrogel,” Angew. Chem. Int. Ed. 46, 1688–1692 (2007).
[Crossref]

Y. Takeoka and M. Watanabe, “Polymer gels that memorize structures of mesoscopically sized templates. Dynamic and optical nature of periodic ordered mesoporous chemical gels,” Langmuir 18, 5977–5980 (2002).
[Crossref]

Tanaka, T.

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92, 1365–1371 (1990).
[Crossref]

T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
[Crossref] [PubMed]

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70, 1214–1218 (1979).
[Crossref]

Thomas, E. L.

Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[Crossref] [PubMed]

Tikhonov, A.

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

Ueno, K.

K. Ueno, K. Matsubara, M. Watanabe, and Y. Takeoka, “An electro- and thermochromic hydrogel as a full-color indicator,” Adv. Mater. 19, 2807–2812 (2007).
[Crossref]

Walish, J. J.

Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[Crossref] [PubMed]

Wang, L.

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

Ward Muscatello, M. M.

M. M. Ward Muscatello, L. E. Stunja, and S. A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations,” Anal. Chem. 81, 4978–4986 (2009).
[Crossref]

Watanabe, M.

K. Matsubara, M. Watanabe, and Y. Takeoka, “A thermally adjustable multicolor photochromic hydrogel,” Angew. Chem. Int. Ed. 46, 1688–1692 (2007).
[Crossref]

K. Ueno, K. Matsubara, M. Watanabe, and Y. Takeoka, “An electro- and thermochromic hydrogel as a full-color indicator,” Adv. Mater. 19, 2807–2812 (2007).
[Crossref]

Y. Takeoka and M. Watanabe, “Polymer gels that memorize structures of mesoscopically sized templates. Dynamic and optical nature of periodic ordered mesoporous chemical gels,” Langmuir 18, 5977–5980 (2002).
[Crossref]

Weissman, J. M.

J. M. Weissman, H. B. Sunkara, S. T. Albert, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959 (1996).
[Crossref] [PubMed]

Weitz, D. A.

T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
[Crossref] [PubMed]

Wolfbeis, O. S.

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic crystals for chemical sensing and biosensing,” Angew. Chem. Int. Ed. 53, 3318–3335 (2014).
[Crossref]

Wu, X. S.

X. S. Wu, A. S. Hoffman, and P. Yager, “Synthesis and characterization of thermally reversible macroporous poly (N-isopropylacrylamide) hydrogels,” J. Polym. Sci. A Polym. Chem. 30, 2121–2129 (1992).
[Crossref]

Xu, X.

X. Xu, A. V. Goponenko, and S. A. Asher, “Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials,” J. Am. Chem. Soc. 130, 3113–3119 (2008).
[Crossref] [PubMed]

Yager, P.

X. S. Wu, A. S. Hoffman, and P. Yager, “Synthesis and characterization of thermally reversible macroporous poly (N-isopropylacrylamide) hydrogels,” J. Polym. Sci. A Polym. Chem. 30, 2121–2129 (1992).
[Crossref]

Yin, Y.

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. 50, 1492–1522 (2011).
[Crossref]

Zacchi, G.

M. Andersson, A. Axelsson, and G. Zacchi, “Swelling kinetics of poly (N-isopropylacrylamide) gel,” J. Control. Release 50, 273–281 (1998).
[Crossref] [PubMed]

Zhang, J.-T.

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

Zhang, Y.

M. Chen, L. Zhou, Y. Guan, and Y. Zhang, “Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates,” Angew. Chem. Int. Ed. 52, 9961–9965 (2013).
[Crossref]

Zhou, L.

M. Chen, L. Zhou, Y. Guan, and Y. Zhang, “Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates,” Angew. Chem. Int. Ed. 52, 9961–9965 (2013).
[Crossref]

Adv. Colloid Interface Sci. (1)

R. Pelton, “Temperature-sensitive aqueous microgels,” Adv. Colloid Interface Sci. 85, 1–33 (2000).
[Crossref] [PubMed]

Adv. Mater. (2)

K. Ueno, K. Matsubara, M. Watanabe, and Y. Takeoka, “An electro- and thermochromic hydrogel as a full-color indicator,” Adv. Mater. 19, 2807–2812 (2007).
[Crossref]

T. Kanai, D. Lee, H. C. Shum, R. K. Shah, and D. A. Weitz, “Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths,” Adv. Mater. 22, 4998–5002 (2010).
[Crossref] [PubMed]

Anal. Chem. (2)

M. Ben-Moshe, V. L. Alexeev, and S. A. Asher, “Fast responsive crystalline colloidal array photonic crystal glucose sensors,” Anal. Chem. 78, 5149–5157 (2006).
[Crossref] [PubMed]

M. M. Ward Muscatello, L. E. Stunja, and S. A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations,” Anal. Chem. 81, 4978–4986 (2009).
[Crossref]

Angew. Chem. Int. Ed. (5)

M. Chen, L. Zhou, Y. Guan, and Y. Zhang, “Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates,” Angew. Chem. Int. Ed. 52, 9961–9965 (2013).
[Crossref]

J. Ge and Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed. 50, 1492–1522 (2011).
[Crossref]

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic crystals for chemical sensing and biosensing,” Angew. Chem. Int. Ed. 53, 3318–3335 (2014).
[Crossref]

K. Matsubara, M. Watanabe, and Y. Takeoka, “A thermally adjustable multicolor photochromic hydrogel,” Angew. Chem. Int. Ed. 46, 1688–1692 (2007).
[Crossref]

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. 53, 2899–2903 (2014).
[Crossref]

J. Am. Chem. Soc. (3)

X. Xu, A. V. Goponenko, and S. A. Asher, “Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials,” J. Am. Chem. Soc. 130, 3113–3119 (2008).
[Crossref] [PubMed]

K. I. MacConaghy, C. I. Geary, J. L. Kaar, and M. P. Stoykovich, “Photonic crystal kinase biosensor,” J. Am. Chem. Soc. 136, 6896–6899 (2014).
[Crossref] [PubMed]

J.-T. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S. A. Asher, “2-D array photonic crystal sensing motif,” J. Am. Chem. Soc. 133, 9152–9155 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (3)

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70, 1214–1218 (1979).
[Crossref]

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92, 1365–1371 (1990).
[Crossref]

S. Asakura and F. Oosawa, “On interaction between two bodies immersed in a solution of macromolecules,” J. Chem. Phys. 22, 1255–1256 (1954).
[Crossref]

J. Control. Release (1)

M. Andersson, A. Axelsson, and G. Zacchi, “Swelling kinetics of poly (N-isopropylacrylamide) gel,” J. Control. Release 50, 273–281 (1998).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

J. D. Debord and L. A. Lyon, “Thermoresponsive photonic crystals,” J. Phys. Chem. B 104, 6327–6331 (2000).
[Crossref]

L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, “Microgel colloidal crystals,” J. Phys. Chem. B 108, 19099–19108 (2004).
[Crossref]

J. Phys. II (1)

J. Bibette, D. Roux, and B. Pouligny, “Creaming of emulsions: the role of depletion forces induced by surfactant,” J. Phys. II 2, 401–424 (1992).

J. Polym. Sci. A Polym. Chem. (1)

X. S. Wu, A. S. Hoffman, and P. Yager, “Synthesis and characterization of thermally reversible macroporous poly (N-isopropylacrylamide) hydrogels,” J. Polym. Sci. A Polym. Chem. 30, 2121–2129 (1992).
[Crossref]

Langmuir (2)

A. Perro, G. Meng, J. Fung, and V. N. Manoharan, “Design and synthesis of model transparent aqueous colloids with optimal scattering properties,” Langmuir 25, 11295–11298 (2009).
[Crossref] [PubMed]

Y. Takeoka and M. Watanabe, “Polymer gels that memorize structures of mesoscopically sized templates. Dynamic and optical nature of periodic ordered mesoporous chemical gels,” Langmuir 18, 5977–5980 (2002).
[Crossref]

Macromolecules (3)

S. Matsukawa and I. Ando, “A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR,” Macromolecules 29, 7136–7140 (1996).
[Crossref]

N. Dingenouts, C. Norhausen, and M. Ballauff, “Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering,” Macromolecules 31, 8912–8917 (1998).
[Crossref]

M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-nonsolvency of poly (n-isopropylacrylamide) in deuterated water/ethanol mixtures,” Macromolecules 46, 7894–7901 (2013).
[Crossref]

Nat. Mater. (1)

Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[Crossref] [PubMed]

Nature (1)

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829–832 (1997).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, “Critical kinetics of volume phase transition of gels,” Phys. Rev. Lett. 55, 2455 (1985).
[Crossref] [PubMed]

Science (1)

J. M. Weissman, H. B. Sunkara, S. T. Albert, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959 (1996).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Polystyrene/poly(N-isopropylacrylamide-co-bisacrylamide-co-acrylic acid, PS/PNiPAm-BIS-AAc) core-shell nanoparticles self-assemble into photonic crystals through a depletion attraction. a) Schematic of the core-shell particle. b) The hydrodynamic diameter of the core-shell particles as a function of temperature in aqueous suspension containing 50 mM NaCl. c) Self-assembly of colloidal crystals is driven by a depletion attraction induced by the presence of non-adsorbing polymer (gray dots). d) An optical micrograph of the photonic crystals formed on a glass substrate shows highly uniform structural colors.

Fig. 2
Fig. 2

PS/PNiPAm-BIS-AAc hydrogel photonic crystals display a continuous shift in the position of their stop band without melting. a) Reflectance spectra of photonic crystals taken during step-wise heating from 20°C to 40°C with a step size of 1°C. b) Peak position (λmax) as a function of temperature during heating (black circles) and cooling (white circles). We equilibrate the samples for 2 min at each temperature before measuring the spectrum. c) A series of optical micrographs of the photonic crystals taken during heating shows the uniform change in structural color upon heating.

Fig. 3
Fig. 3

PS/PNiPAm-BIS-AAc photonic crystals respond quickly to changes in temperature. a, b) Peak wavelength λmax (black circles) and temperature (red circles) as a function of time during a) heating and b) cooling. After a few-second delay between the photonic-crystal response and the temperature change, Δt, the stop-band position shifts across the entire visible range with a time constant of 3 sec (heating) or 7.5 sec (cooling). c) The stop-band position λmax as a function of temperature during cyclic swelling and deswelling of the crystals. The temperature is monitored by a thermistor, which is embedded in a dab of thermal paste confined between the sample and heating surface.

Fig. 4
Fig. 4

The concentration of non-adsorbing polymer is critical to the stability of self-assembled photonic crystals. a) Normalized full-width at half maximum, Δλ/λmax, of colloidal crystals prepared with different polymer concentrations as a function of temperature: 2.9 g/L (triangles), 4.6 g/L (squares), and 5.7 g/L (circles). We consider the crystals to be melted when Δλ/λmax exceeds 0.2. b) Equilibrium phase diagram in polymer concentration-colloid volume fraction phase space. The phase boundary is computed according to methods in Ref. [30]. The effective size of the polymer depletant is taken to be 62.5 nm, consistent with dynamic light scattering measurements. Lumped contributions due to solid entropy and van der Waals energy are treated as a free parameter, which is constrained by our data at three different polymer concentrations. Points show experimental particle volume fractions for the experimental conditions in a). Open symbols indicate the observed fluid phase, whereas filled symbols indicate the observed crystal phase.

Fig. 5
Fig. 5

a) Reflectance spectra of photonic crystals taken during step-wise cooling from 40°C to 20°C with a step size of −1°C. b) A series of optical micrographs of the photonic crystals taken during cooling.

Fig. 6
Fig. 6

The volume of a macroscopic hydrogel of poly(NiPAm-co-BIS-AAc) decreases rapidly with increasing temperature inside a glass vial (photos). Open circles show the normalized radius R/R0 of the gel cylinder as a function of time, where R0 is the initial radius; closed circles show the temperature as a function of time. Red curves show exponential fits.

Metrics