Abstract

R-on-1 laser induced breakdown thresholds are reported for a wide range of lithium niobate crystals at laser parameters relevant for state-of-the-art optical parametric amplifiers pumped with high repetition rate ultrafast Yb-laser sources. The samples included uncoated and anti-reflection coated, blank and periodically poled MgO-doped congruent crystals and were measured at repetition rates between 10 and 1000 kHz, pulse durations of 330 fs and 1 ps, and temperatures between 20 and 170 °C.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High repetition rate, femtosecond and picosecond laser induced damage thresholds of Rb:KTiOPO4 at 1.03 µm

Florian Bach, Mark Mero, Valdas Pasiskevicius, Andrius Zukauskas, and Valentin Petrov
Opt. Mater. Express 7(3) 744-750 (2017)

Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser

Yi Li, Feng Liu, Yanfeng Li, Lu Chai, Qirong Xing, Minglie Hu, and Chingyue Wang
Appl. Opt. 50(13) 1958-1962 (2011)

Green-pumped, picosecond MgO:PPLN optical parametric oscillator

Florian Kienle, Dejiao Lin, Shaif-ul Alam, Hazel S. S. Hung, Corin B. E. Gawith, Huw E. Major, David J. Richardson, and David P. Shepherd
J. Opt. Soc. Am. B 29(1) 144-152 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
    [Crossref]
  2. Y. Shamir, J. Rothhardt, S. Hädrich, S. Demmler, M. Tschernajew, J. Limpert, and A. Tünnermann, “High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate,” Opt. Lett. 40(23), 5546–5549 (2015).
    [Crossref] [PubMed]
  3. M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
    [Crossref] [PubMed]
  4. M. Puppin, Y. Deng, O. Prochnow, J. Ahrens, T. Binhammer, U. Morgner, M. Krenz, M. Wolf, and R. Ernstorfer, “500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser,” Opt. Express 23(2), 1491–1497 (2015).
    [Crossref] [PubMed]
  5. S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
    [Crossref]
  6. S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser radiation,” Opt. Mater. 40, 10–13 (2015).
    [Crossref]
  7. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
    [Crossref]
  8. J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28(8), 1973–1987 (2011).
    [Crossref]
  9. I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
    [Crossref]
  10. L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
    [Crossref] [PubMed]
  11. H. Jang, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Highly efficient backward stimulated polariton scattering in periodically poled KTiOPO4,” CLEO 2015, paper STh4H.1.
  12. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” Appl. Phys. (Berl.) 40(8), 3389–3396 (1969).
    [Crossref]
  13. R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
    [Crossref]
  14. Q. W. Song, C. P. Zhang, and P. J. Talbot, “Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO(3):Fe crystals,” Appl. Opt. 32(35), 7266–7271 (1993).
    [Crossref] [PubMed]
  15. P.-A. Belanger and C. Pare, “Self-focusing of Gaussian beams: an alternate derivation,” Appl. Opt. 22(9), 1293–1295 (1983).
    [Crossref] [PubMed]
  16. M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
    [Crossref]
  17. J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4(1), 35–110 (1975).
    [Crossref]
  18. I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky, and T. Usmanov, “Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals,” J. Opt. Soc. Am. B 23(1), 75–80 (2006).
    [Crossref]
  19. R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
    [Crossref]
  20. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
    [Crossref]
  21. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [Crossref]
  22. J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
    [Crossref]

2015 (5)

2013 (1)

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

2011 (1)

2009 (1)

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

2006 (1)

2003 (2)

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
[Crossref]

L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

2000 (1)

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
[Crossref]

1996 (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

1993 (1)

1987 (1)

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

1983 (1)

1975 (1)

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4(1), 35–110 (1975).
[Crossref]

1972 (1)

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

1969 (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” Appl. Phys. (Berl.) 40(8), 3389–3396 (1969).
[Crossref]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Agullo-Lopez, F.

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
[Crossref]

Ahrens, J.

Alcazar-de-Velasco, A.

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
[Crossref]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Ashihara, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Bach, F.

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Baudisch, M.

M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
[Crossref]

Belanger, P.-A.

Biegert, J.

M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
[Crossref]

Binhammer, T.

Boling, N. L.

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Buse, K.

Cabrera, J. M.

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
[Crossref]

Carrascosa, M.

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
[Crossref]

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” Appl. Phys. (Berl.) 40(8), 3389–3396 (1969).
[Crossref]

Crisp, M. D.

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Demmler, S.

Deng, Y.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Drazdys, R.

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Dubé, G.

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Echardt, R. C.

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Ernstorfer, R.

Falk, M.

Fejer, M. M.

Feng, S.

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

Gallais, L.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Ganeev, R. A.

I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky, and T. Usmanov, “Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals,” J. Opt. Soc. Am. B 23(1), 75–80 (2006).
[Crossref]

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Grigonis, R.

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Hädrich, S.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Hemmer, M.

M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
[Crossref]

Hirohashi, J.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

Ishizuki, H.

M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
[Crossref]

Jundt, D. H.

Kato, S.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser radiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

Kicas, S.

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Kratzig, E.

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

Krenz, M.

Kulagin, I. A.

I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky, and T. Usmanov, “Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals,” J. Opt. Soc. Am. B 23(1), 75–80 (2006).
[Crossref]

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
[Crossref]

Kurimura, S.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser radiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Lim, H. H.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser radiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

Limpert, J.

Marburger, J. H.

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4(1), 35–110 (1975).
[Crossref]

Marotz, J.

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

Mero, M.

Mio, N.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser radiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

Morgner, U.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Natoli, J.-Y.

Noack, F.

Pare, C.

Petrov, V.

Phillips, C. R.

Pipinyte, I.

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Pires, H.

M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
[Crossref]

Prochnow, O.

Puppin, M.

Rams, J.

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
[Crossref]

Ringhofer, K.

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

Rothhardt, J.

Rupp, R.

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

Ryasnyanskii, A. I.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
[Crossref]

Ryasnyansky, A. I.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Sasamoto, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

Schwesyg, J. R.

Shamir, Y.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Sirutkaitis, V.

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Song, Q. W.

Stankeviciute, K.

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Taira, T.

M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
[Crossref]

Talbot, P. J.

Treichel, S.

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

Tschernajew, M.

Tugushev, R. I.

I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky, and T. Usmanov, “Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals,” J. Opt. Soc. Am. B 23(1), 75–80 (2006).
[Crossref]

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
[Crossref]

Tünnermann, A.

Usmanov, T.

I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky, and T. Usmanov, “Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals,” J. Opt. Soc. Am. B 23(1), 75–80 (2006).
[Crossref]

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
[Crossref]

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Vrakking, M. J. J.

Wolf, M.

Zhang, C. P.

Appl. Opt. (3)

Appl. Phys. (Berl.) (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” Appl. Phys. (Berl.) 40(8), 3389–3396 (1969).
[Crossref]

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (2)

M. D. Crisp, N. L. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Rupp, J. Marotz, K. Ringhofer, S. Treichel, S. Feng, and E. Kratzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23(12), 2136–2141 (1987).
[Crossref]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

J. Appl. Phys. (1)

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

J. Opt. (1)

M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, “Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz,” J. Opt. 17(9), 094002 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1), 211–216 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser radiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

Opt. Spectrosc. (1)

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyanskii, R. I. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94(4), 561–568 (2003).
[Crossref]

Proc. SPIE (1)

I. Pipinyte, R. Grigonis, K. Stankeviciute, S. Kicas, R. Drazdys, R. C. Echardt, and V. Sirutkaitis, “Laser-induced-damage thresholds of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz,” Proc. SPIE 8786, 87861N (2013).
[Crossref]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4(1), 35–110 (1975).
[Crossref]

Other (1)

H. Jang, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Highly efficient backward stimulated polariton scattering in periodically poled KTiOPO4,” CLEO 2015, paper STh4H.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Experimental set-up. T: telescope, TFP: thin film polarizer, λ/2: half-wave plate, BD: beam dump, ISO: Faraday isolator, SPF: short-pass filter, IF: laser line interference filter, PD: photodiode, and PM: power meter.
Fig. 2
Fig. 2 Photodiode signals for an exemplary LIDT measurement on a single-layer AR-coated LN sample with a pulse duration of ~1 ps and a repetition rate of 100 kHz. The sample was placed in the focus with a beam diameter of FWHM = 62 µm at its front surface. PD1 gives a reference signal converted here to actual incident pulse energy, PD2 detects the scattered HeNe laser light, and PD3 detects the scattered light above 1 µm.
Fig. 3
Fig. 3 Beam profiles of the transmitted HeNe laser beam behind an uncoated LN sample seen on a white screen with a hole in the center to avoid reflections of the high power part. Measurements were performed at a repetition rate of 1000 kHz for a pulse duration of ~1 ps. The photographs show the beam profile before increasing the power (a), directly after illumination at a pulse energy of 7 µJ slightly below the damage threshold (b), and ~45 min later with the 1.03-µm beam blocked (c).
Fig. 4
Fig. 4 Horizontal (black curve) and vertical (red curve) M2 measurement of the Yb-laser beam focused with the f = 300 mm lens. The gray rectangles indicate the sample position with the corresponding beam profiles shown in the boxes above. The size of each box is 0.4 × 0.4 mm2. The color map is the same as in Fig. 3.
Fig. 5
Fig. 5 a) Comparison of measured and recalculated incident LIDT peak on-axis fluence values for uncoated LN at different positions along the focused beam shown in Fig. 4. The measurement was performed at 100-kHz repetition rate and a pulse duration of ~1 ps. For the recalculated fluence values, the fitted pulse energy values shown in b) were used. b) Measured and fitted incident pulse energy with best fit values of Fintrinsic = 760 mJ/cm2 and γ = 11 × 10−20 m2/W.
Fig. 6
Fig. 6 Normalized RMSE 2D plot with a clear minimum at Fintrinsic = 760 mJ/cm2 and γ = 11 × 10−20 m2/W. The given RMSE is the error between measured and recalculated single pulse energies.
Fig. 7
Fig. 7 Measured damage threshold peak on-axis fluence (a) and intensity (b) for uncoated LN at different repetition rates and a pulse duration of 330 fs and 1 ps. The front side of the sample was placed in the focal plane. The solid lines serve to guide the eye.
Fig. 8
Fig. 8 Reflected light microscope images of typical surface damage sites observed at the backside of the sample for 1-ps pulses and a repetition rate of 10 kHz (a), 50 kHz (b), 100 kHz (c), 500 kHz (d), and 1000 kHz (e).
Fig. 9
Fig. 9 Ripple structure at the damage site for 10-kHz (a) and 50-kHz (b) repetition rate at 1 ps pulse duration observed with a transmitted light microscope.
Fig. 10
Fig. 10 Typical crater and surface damage observed at the backside of the sample for 330-fs pulses and a repetition rate of 20 kHz (a), 50 kHz (b), 100 kHz (c), 500 kHz (d) and 1000 kHz (e). The discoloration in (c) is an artifact and can be ignored.
Fig. 11
Fig. 11 Measured damage threshold peak on-axis fluence (a) and intensity (b) for uncoated, single-layer AR coated and multi-layer AR coated LN samples at 100-kHz repetition rate and a pulse duration of 1 ps. The measurements were performed with the sample at the focus and behind the focus under different focusing conditions. The solid lines serve to guide the eye.
Fig. 12
Fig. 12 Typical damage sites for uncoated (a), single-layer (b), multi-layer (c) and again single-layer AR-coated (d) samples at the focus at a repetition rate of 100 kHz and a pulse duration of ~1 ps. In the case of damage site (d) the shutter was not closed immediately. For damage site (b) and (c), surface damage under the coating is hypothesized.
Fig. 13
Fig. 13 Measured damage threshold peak on-axis fluence (a) and intensity (b) at different sample temperatures for uncoated samples behind the focus at a repetition rate of 100 kHz and a pulse duration of ~1 ps. The solid lines serve to guide the eye.
Fig. 14
Fig. 14 Scattered power above 1 μm (i.e. PD3 signal) as a function of incident pulse energy at three different crystal temperatures for uncoated samples placed behind the focus. The laser repetition rate and pulse duration were 100 kHz and 1 ps, respectively.
Fig. 15
Fig. 15 Comparison of the measured damage threshold at 100 kHz repetition rate and pulse duration of 1 ps. Sample position was behind the focus. The solid lines serve to guide the eye.

Tables (3)

Tables Icon

Table 1 LIDT peak on-axis fluence and intensity values measured for 330 fs and 1 ps pulse durations and different repetition rates.

Tables Icon

Table 2 LIDT peak on-axis fluence and intensity values measured and calculated for uncoated, single- and multi-layer AR coated samples at 100 kHz and pulse duration of ~1ps.

Tables Icon

Table 3 LIDT peak on-axis fluence and intensity values measured for different sample temperatures at 100 kHz and pulse duration of ~1 ps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w 2 ( x )= w 2 ( 0 )[ ( 1+ x R( 0 ) ) 2 + ( λx π n 0 w 2 ( 0 ) ) 2 σ ],
σ=1 P 0 P cr =1 16 πln( 2 ) n 0 γE λ 2 τ .

Metrics